1,154 research outputs found
Deformation of NaCoF3 perovskite and post-perovskite up to 30 GPa and 1013 K: implications for plastic deformation and transformation mechanism
Texture, plastic deformation, and phase transformation mechanisms in perovskite and post-perovskite are of general interest for our understanding of the Earth's mantle. Here, the perovskite analogue NaCoF3 is deformed in a resistive-heated diamond anvil cell (DAC) up to 30 GPa and 1013 K. The in situ state of the sample, including crystal structure, stress, and texture, is monitored using X-ray diffraction. A phase transformation from a perovskite to a post-perovskite structure is observed between 20.1 and 26.1 GPa. Normalized stress drops by a factor of 3 during transformation as a result of transient weakening during the transformation. The perovskite phase initially develops a texture with a maximum at 100 and a strong 010 minimum in the inverse pole figure of the compression direction. Additionally, a secondary weaker 001 maximum is observed later during compression. Texture simulations indicate that the initial deformation of perovskite requires slip along (100) planes with significant contributions of {110} twins. Following the phase transition to post-perovskite, we observe a 010 maximum, which later evolves with compression. The transformation follows orientation relationships previously suggested where the c axis is preserved between phases and hh0 vectors in reciprocal space of post-perovskite are parallel to [010] in perovskite, which indicates a martensitic-like transition mechanism. A comparison between past experiments on bridgmanite and current results indicates that NaCoF3 is a good analogue to understand the development of microstructures within the Earth's mantle
Anti-self-dual Maxwell solutions on hyperk\"ahler manifold and N=2 supersymmetric Ashtekar gravity
Anti-self-dual (ASD) Maxwell solutions on 4-dimensional hyperk\"ahler
manifolds are constructed. The N=2 supersymmetric half-flat equations are
derived in the context of the Ashtekar formulation of N=2 supergravity. These
equations show that the ASD Maxwell solutions have a direct connection with the
solutions of the reduced N=2 supersymmetric ASD Yang-Mills equations with a
special choice of gauge group. Two examples of the Maxwell solutions are
presented.Comment: 9 page
The role of rainfalls for erosion and sedimentation in the degraded mangroves, Can Gio district, Vietnam
Joint Research on Environmental Science and Technology for the Eart
Dipole-quadrupole interactions and the nature of phase III of compressed hydrogen
A new class of strongly infrared active structures is identified for phase
III of compressed molecular H2 by constant-pressure ab initio molecular
dynamics and density-functional perturbation calculations. These are planar
quadrupolar structures obtained as a distortion of low-pressure quadrupolar
phases, after they become unstable at about 150 GPa due to a zone-boundary soft
phonon. The nature of the II-III transition and the origin of the IR activity
are rationalized by means of simple electrostatics, as the onset of a
stabilizing dipole-quadrupole interaction.Comment: 4 pages, 3 figures. To appear in Phys. Rev. Let
Ab initio studies of the double–Gamow-Teller transition and its correlation with neutrinoless double-β decay
We use chiral interactions and several ab initio methods to compute the nuclear matrix elements (NMEs) for ground-state-to-ground-state double Gamow-Teller transitions in a range of isotopes and explore the correlation of these NMEs with those for neutrinoless double beta decay produced by the exchange of a light Majorana neutrino. When all the NMEs of both isospin-conserving and isospin-changing transitions from the ab initio calculations are considered, the correlation is strong. For the experimentally relevant isospin-changing transitions by themselves, however, the correlation is weaker and may not be helpful for reducing the uncertainty in the NMEs for neutrinoless double beta decay
- …