72 research outputs found

    Absence of keratin 8 or 18 promotes antimitochondrial autoantibody formation in aging male mice

    Full text link
    Human mutations in keratin 8 (K8) and keratin 18 (K18), the intermediate filament proteins of hepatocytes, predispose to several liver diseases. K8‐null mice develop chronic liver injury and fragile hepatocytes, dysfunctional mitochondria, and Th2‐type colitis. We tested the hypothesis that autoantibody formation accompanies the liver damage that associates with K8/K18 absence. Sera from wild‐type control, K8‐null, and K18‐null mice were analyzed by immunoblotting and immunofluorescence staining of cell and mouse tissue homogenates. Autoantibodies to several antigens were identified in 81 % of K8‐null male mice 8 mo or older. Similar autoantibodies were detected in aging K18‐null male mice that had a related liver phenotype but normal colon compared with K8‐null mice, suggesting that the autoantibodies are linked to liver rather than colonic disease. However, these autoantibodies were not observed in nontransgenic mice subjected to 4 chronic injury models. The autoantigens are ubiquitous and partition with mitochondria. Mass spectrometry and purified protein analysis identified, mitochondrial HMG‐CoA synthase, aldehyde dehydrogenase, and catalase as the primary autoantigens, and glutamate dehydrogenase and epoxide hydrolase‐2 as additional autoantigens. Therefore, absence of the hepatocyte keratins results in production of anti‐mitochondrial autoantibodies (AMA) that recognize proteins involved in energy metabolism and oxidative stress, raising the possibility that AMA may be found in patients with keratin mutations that associate with liver and other diseases.—Toivola, D. M., Habtezion, A., Misiorek, J. O., Zhang, L., Nyström, J. H., Sharpe, O., Robinson, W. H., Kwan, R., Omary, M. B. Absence of keratin 8 or 18 promotes antimitochondrial autoantibody formation in aging male mice. FASEB J. 29, 5081–5089 (2015). www.fasebj.orgPeer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/154363/1/fsb2029012032.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/154363/2/fsb2029012032-sup-0002.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/154363/3/fsb2029012032-sup-0003.pd

    The influence of a grain boundary on the thermal transport properties of bulk, melt-processed Y-Ba-Cu-O

    Full text link
    We report the dependence of thermal conductivity, thermoelectric power and electrical resistivity on temperature for a bulk, large grain melt-processed Y-Ba-Cu-O (YBCO) high temperature superconductor (HTS) containing two grains separated by a well-defined grain boundary. Transport measurements at temperatures between 10 and 300 K were carried out both within one single grain (intra-granular properties) and across the grain boundary (inter-granular properties). The influence of an applied external magnetic field of up to 8 T on the measured sample properties was also investigated. The presence of the grain boundary is found to affect strongly the electrical resistivity of the melt-processed bulk sample, but has almost no effect on its thermoelectric power and thermal conductivity, within experimental error. The results of this study provide direct evidence that the heat flow in multi-granular melt-processed YBCO bulk samples should be virtually unaffected by the presence of grain boundaries in the material. © 2013 IOP Publishing Ltd

    Influence of microstructure on the thermal conductivity of magnetoresistive La0.7Ca0.3MnO3/Mn3O4 manganite/insulating oxide polycrystalline bulk composites

    Full text link
    We report the temperature dependence of the thermal conductivity kappa(T) of bulk polycrystalline composite samples containing a magnetoresistive manganite (La0.7Ca0.3MnO3) and an electrically insulating phase (Mn3O4). The sample porosity is shown to be a significant parameter affecting the experimental data: after porosity correction the curves display the characteristics of an ideal composite. A fit of the kappa(T) curves at low temperature using the Debye model enables the mean free path of phonons scattered on "boundaries" to be determined. The values are on the order of the grain size but are influenced by the grain arrangement and the presence of twins

    The influence of a grain boundary on the thermal transport properties of bulk, melt-processed Y-Ba-Cu-O

    No full text
    We report the dependence of thermal conductivity, thermoelectric power and electrical resistivity on temperature for a bulk, large grain melt-processed Y-Ba-Cu-O (YBCO) high temperature superconductor (HTS) containing two grains separated by a well-defined grain boundary. Transport measurements at temperatures between 10 and 300 K were carried out both within one single grain (intra-granular properties) and across the grain boundary (inter-granular properties). The influence of an applied external magnetic field of up to 8 T on the measured sample properties was also investigated. The presence of the grain boundary is found to affect strongly the electrical resistivity of the melt-processed bulk sample, but has almost no effect on its thermoelectric power and thermal conductivity, within experimental error. The results of this study provide direct evidence that the heat flow in multi-granular melt-processed YBCO bulk samples should be virtually unaffected by the presence of grain boundaries in the material. © 2013 IOP Publishing Ltd

    Thermal conductivity of the pine-biocarbon-preform/copper composite

    No full text
    The thermal conductivity of composites of a new type prepared by infiltration under vacuum of melted copper into empty sap channels (aligned with the sample length) of high-porosity biocarbon preforms of white pine tree wood has been studied in the temperature range 5–300 K. The biocarbon preforms have been prepared by pyrolysis of tree wood in an argon flow at two carbonization temperatures of 1000 and 2400°C. From the experimental values of the composite thermal conductivities, the fraction due to the thermal conductivity of the embedded copper is isolated and found to be substantially lower than that of the original copper used in preparation of the composites. The decrease in the thermal conductivity of copper in the composite is assigned to defects in its structure, namely, breaks in the copper filling the sap channels, as well as the radial ones, also filled by copper. A possibility of decreasing the thermal conductivity of copper in a composite due to its doping by the impurities present in the carbon preform is discussed

    Heat Capacity of the White Pine Biocarbon Preform and the Related Biocarbon/Copper Composite

    No full text
    This paper reports on measurements in the 80–300-K temperature interval of the heat capacity at constant pressure C_(p)(T) of high-porosity amorphous white pine carbon preforms (biocarbon) prepared by pyrolysis (carbonization) at T_(carb) = 1000 and 2400°C in an argon flow. The dependences C_(p)(T) for biocarbon/copper composites based on the carbon preforms obtained have also been determined. It is shown that the mixture rule holds for the composites, i.e., that C_(p)(T) of the composite is a sum of the heat capacities of the constituent materials taken in the corresponding ratios. Phonon mean free paths for the white pine carbon preforms prepared at T_(carb) = 1000 and 2400°C have been calculated and used to estimate the size of the nanocrystallites contributing to formation of the carbon frameworks of these preforms

    Absence of keratin 8 or 18 promotes antimitochondrial autoantibody formation in aging male mice

    No full text
    Human mutations in keratin 8 (K8) and keratin 18 (K18), the intermediate filament proteins of hepatocytes, predispose to several liver diseases. K8-null mice develop chronic liver injury and fragile hepatocytes, dysfunctional mitochondria, and Th2-type colitis. We tested the hypothesis that autoantibody formation accompanies the liver damage that associates with K8/K18 absence. Sera from wild-type control, K8-null, and K18-null mice were analyzed by immunoblotting and immunofluorescence staining of cell and mouse tissue homogenates. Autoantibodies to several antigens were identified in 81% of K8-null male mice 8 mo or older. Similar autoantibodies were detected in aging K18-null male mice that had a related liver phenotype but normal colon compared with K8-null mice, suggesting that the autoantibodies are linked to liver rather than colonic disease. However, these autoantibodies were not observed in nontransgenic mice subjected to 4 chronic injury models. The autoantigens are ubiquitous and partition with mitochondria. Mass spectrometry and purified protein analysis identified, mitochondrial HMG-CoA synthase, aldehyde dehydrogenase, and catalase as the primary autoantigens, and glutamate dehydrogenase and epoxide hydrolase-2 as additional autoantigens. Therefore, absence of the hepatocyte keratins results in production of anti-mitochondrial autoantibodies (AMA) that recognize proteins involved in energy metabolism and oxidative stress, raising the possibility that AMA may be found in patients with keratin mutations that associate with liver and other diseases.—Toivola, D. M., Habtezion, A., Misiorek, J. O., Zhang, L., Nyström, J. H., Sharpe, O., Robinson, W. H., Kwan, R., Omary, M. B. Absence of keratin 8 or 18 promotes antimitochondrial autoantibody formation in aging male mice
    corecore