6,776 research outputs found

    Matched wideband low-noise amplifiers for radio astronomy

    Get PDF
    Two packaged low noise amplifiers for the 0.3–4 GHz frequency range are described. The amplifiers can be operated at temperatures of 300–4 K and achieve noise temperatures in the 5 K range (<0.1 dB noise figure) at 15 K physical temperature. One amplifier utilizes commercially available, plastic-packaged SiGe transistors for first and second stages; the second amplifier is identical except it utilizes an experimental chip transistor as the first stage. Both amplifiers use resistive feedback to provide input reflection coefficient S11<−10 dB over a decade bandwidth with gain over 30 dB. The amplifiers can be used as rf amplifiers in very low noise radio astronomy systems or as i.f. amplifiers following superconducting mixers operating in the millimeter and submillimeter frequency range

    Self-consistent ac quantum transport using nonequilibrium Green functions

    Full text link
    We develop an approach for self-consistent ac quantum transport in the presence of time-dependent potentials at non-transport terminals. We apply the approach to calculate the high-frequency characteristics of a nanotube transistor with the ac signal applied at the gate terminal. We show that the self-consistent feedback between the ac charge and potential is essential to properly capture the transport properties of the system. In the on-state, this feedback leads to the excitation of plasmons, which appear as pronounced divergent peaks in the dynamic conductance at terahertz frequencies. In the off-state, these collective features vanish, and the conductance exhibits smooth oscillations, a signature of single-particle excitations. The proposed approach is general and will allow the study of the high-frequency characteristics of many other low-dimensional nanoscale materials such as nanowires and graphene-based systems, which are attractive for terahertz devices, including those that exploit plasmonic excitations.Comment: 11 pages, 5 figures, accepted in Physical Review

    Flow reversals in turbulent convection via vortex reconnections

    Full text link
    We employ detailed numerical simulations to probe the mechanism of flow reversals in two-dimensional turbulent convection. We show that the reversals occur via vortex reconnection of two attracting corner rolls having same sign of vorticity, thus leading to major restructuring of the flow. Large fluctuations in heat transport are observed during the reversal due to this flow reconfiguration. The flow configurations during the reversals have been analyzed quantitatively using large-scale modes. Using these tools, we also show why flow reversals occur for a restricted range of Rayleigh and Prandt numbers

    A Predictive Model for Convective Flows Induced by Surface Reactivity Contrast

    Get PDF
    Concentration gradients in a fluid along a reactive surface due to contrast in surface reactivity generate convective flows. These flows result from contributions by electro and diffusio osmotic phenomena. In this study we have analyzed reactive patterns that release and consume protons, analogous to bimetallic catalytic conversion of peroxide. Here, we present a simple analytical model that accurately predicts the induced potentials and consequent velocities in such systems over a wide range of input parameters. Our model is tested against direct numerical solutions to the coupled Poisson, Nernst-Planck, and Navier-Stokes equations. Our analysis can be used to predict enhancement of mass transport and the resulting impact on overall catalytic conversion, and is also applicable to predicting the speed of catalytic nanomotors

    Understanding the Fano Resonance : through Toy Models

    Full text link
    The Fano Resonance, involving the mixing between a quasi-bound `discrete' state of an inelastic channel lying in the continuum of scattering states belonging to the elastic channel, has several subtle features. The underlying ideas have recently attracted attention in connection with interference effects in quantum wires and mesoscopic transport phenomena. Simple toy models are provided in the present study to illustrate the basics of the Fano resonance in a simple and tractable setting.Comment: 17 pages, 1 figur

    Quantum discord and non-Markovianity of quantum dynamics

    Full text link
    The problem of recognizing (non-)Markovianity of a quantum dynamics is revisited through analyzing quantum correlations. We argue that instantaneously-vanishing quantum discord provides a necessary and sufficient condition for Markovianity of a quantum map. This is used to introduce a measure of non-Markovianity. This measure, however, requires demanding knowledge about the system and the environment. By using a quantum correlation monogamy property and an ancillary system, we propose a simplified measure with less requirements. Non-Markovianity is thereby decided by quantum state tomography of the system and the ancilla.Comment: 5 pages, 3 figure
    • …
    corecore