8,765 research outputs found

    Valley-dependent Brewster angles and Goos-Hanchen effect in strained graphene

    Full text link
    We demonstrate theoretically how local strains in graphene can be tailored to generate a valley polarized current. By suitable engineering of local strain profiles, we find that electrons in opposite valleys (K or K') show different Brewster-like angles and Goos-H\"anchen shifts, exhibiting a close analogy with light propagating behavior. In a strain-induced waveguide, electrons in K and K' valleys have different group velocities, which can be used to construct a valley filter in graphene without the need for any external fields.Comment: 5 pages, 4 figure

    The quantum probability ranking principle for information retrieval

    Get PDF
    While the Probability Ranking Principle for Information Retrieval provides the basis for formal models, it makes a very strong assumption regarding the dependence between documents. However, it has been observed that in real situations this assumption does not always hold. In this paper we propose a reformulation of the Probability Ranking Principle based on quantum theory. Quantum probability theory naturally includes interference effects between events. We posit that this interference captures the dependency between the judgement of document relevance. The outcome is a more sophisticated principle, the Quantum Probability Ranking Principle, that provides a more sensitive ranking which caters for interference/dependence between documents’ relevanc

    Superconducting magnesium diboride films on Silicon with Tc0 about 24K grown via vacuum annealing from stoichiometric precursors

    Full text link
    Superconducting magnesium diboride films with Tc0 ~ 24 K and sharp transition \~ 1 K were successfully prepared on silicon substrates by pulsed laser deposition from a stoichiometric MgB2 target. Contrary to previous reports, anneals at 630 degree and a background of 2x10^(-4) torr Ar/4%H2 were performed without the requirement of Mg vapor or an Mg cap layer. This integration of superconducting MgB2 films on silicon may thus prove enabling in superconductor-semiconductor device applications. Images of surface morphology and cross-section profiles by scanning electron microscopy (SEM) show that the films have a uniform surface morphology and thickness. Energy dispersive spectroscopy (EDS) reveals these films were contaminated with oxygen, originating either from the growth environment or from sample exposure to air. The oxygen contamination may account for the low Tc for those in-situ annealed films, while the use of Si as the substrate does not result in a decrease in Tc as compared to other substrates.Comment: 5 pages, 4 figures, 15 references; due to file size limit, images were blure

    On the error term in Weyl's law for the Heisenberg manifolds (II)

    Full text link
    In this paper we study the mean square of the error term in the Weyl's law of an irrational (2l+1)(2l+1)-dimensional Heisenberg manifold . An asymptotic formula is established

    An improved continuous compositional-spread technique based on pulsed-laser deposition and applicable to large substrate areas

    Full text link
    A new method for continuous compositional-spread (CCS) thin-film fabrication based on pulsed-laser deposition (PLD) is introduced. This approach is based on a translation of the substrate heater and the synchronized firing of the excimer laser, with the deposition occurring through a slit-shaped aperture. Alloying is achieved during film growth (possible at elevated temperature) by the repeated sequential deposition of sub-monolayer amounts. Our approach overcomes serious shortcomings in previous in-situ implementations of CCS based on sputtering or PLD, in particular the variations of thickness across the compositional spread and the differing deposition energetics as function of position. While moving-shutter techniques are appropriate for PLD-approaches yielding complete spreads on small substrates (i.e. small as compared to distances over which the deposition parameters in PLD vary, typically about 1 cm), our method can be used to fabricate samples that are large enough for individual compositions to be analyzed by conventional techniques, including temperature-dependent measurements of resistivity and dielectric and magnetic and properties (i.e. SQUID magnetometry). Initial results are shown for spreads of (Sr,Ca)RuO3_3.Comment: 6 pages, 8 figures, accepted for publication in Rev. Sci. Instru

    Two-dimensional molecular para-hydrogen and ortho-deuterium at zero temperature

    Full text link
    We study molecular para-hydrogen (p-H2{\rm H_{2}}) and ortho-deuterium (o-D2{\rm D_{2}}) in two dimensions and in the limit of zero temperature by means of the diffusion Monte Carlo method. We report energetic and structural properties of both systems like the total and kinetic energy per particle, radial pair distribution function, and Lindemann's ratio in the low pressure regime. By comparing the total energy per particle as a function of the density in liquid and solid p-H2{\rm H_{2}}, we show that molecular para-hydrogen, and also ortho-deuterium, remain solid at zero temperature. Interestingly, we assess the quality of three different symmetrized trial wave functions, based on the Nosanow-Jastrow model, in the p-H2{\rm H_{2}} solid film at the variational level. In particular, we analyze a new type of symmetrized trial wave function which has been used very recently to describe solid 4^{4}He and found that also characterizes hydrogen satisfactorily. With this wave function, we show that the one-body density matrix ϱ1(r)\varrho_{1} (r) of solid p-H2{\rm H_{2}} possesses off-diagonal long range order, with a condensate fraction that increases sizably in the negative pressure regime.Comment: 11 pages, 9 figure

    Effective Vortex Pinning in MgB2 thin films

    Full text link
    We discuss pinning properties of MgB2 thin films grown by pulsed-laser deposition (PLD) and by electron-beam (EB) evaporation. Two mechanisms are identified that contribute most effectively to the pinning of vortices in randomly oriented films. The EB process produces low defected crystallites with small grain size providing enhanced pinning at grain boundaries without degradation of Tc. The PLD process produces films with structural disorder on a scale less that the coherence length that further improves pinning, but also depresses Tc
    corecore