37,924 research outputs found
Stable Direct Adaptive Control of Linear Infinite-dimensional Systems Using a Command Generator Tracker Approach
A command generator tracker approach to model following contol of linear distributed parameter systems (DPS) whose dynamics are described on infinite dimensional Hilbert spaces is presented. This method generates finite dimensional controllers capable of exponentially stable tracking of the reference trajectories when certain ideal trajectories are known to exist for the open loop DPS; we present conditions for the existence of these ideal trajectories. An adaptive version of this type of controller is also presented and shown to achieve (in some cases, asymptotically) stable finite dimensional control of the infinite dimensional DPS
Coherence measurements on Rydberg wave packets kicked by a half-cycle pulse
A kick from a unipolar half-cycle pulse (HCP) can redistribute population and
shift the relative phase between states in a radial Rydberg wave packet. We
have measured the quantum coherence properties following the kick, and show
that selected coherences can be destroyed by applying an HCP at specific times.
Quantum mechanical simulations show that this is due to redistribution of the
angular momentum in the presence of noise. These results have implications for
the storage and retrieval of quantum information in the wave packet.Comment: 4 pages, 4 figures (5 figure files
Topological Computation without Braiding
We show that universal quantum computation can be performed within the ground
state of a topologically ordered quantum system, which is a naturally protected
quantum memory. In particular, we show how this can be achieved using brane-net
condensates in 3-colexes. The universal set of gates is implemented without
selective addressing of physical qubits and, being fully topologically
protected, it does not rely on quasiparticle excitations or their braiding.Comment: revtex4, 4 pages, 4 figure
Interplay between superconductivity and itinerant magnetism in underdoped BaKFeAs ( 0.2) probed by the response to controlled point-like disorder
The response of superconductors to controlled introduction of point-like
disorder is an important tool to probe their microscopic electronic collective
behavior. In the case of iron-based superconductors (IBS), magnetic
fluctuations presumably play an important role in inducing high temperature
superconductivity. In some cases, these two seemingly incompatible orders
coexist microscopically. Therefore, understanding how this unique coexistence
state is affected by disorder can provide important information about the
microscopic mechanisms involved. In one of the most studied pnictide family,
hole-doped BaKFeAs (BaK122), this coexistence occurs over a
wide range of doping levels, 0.16~~0.25. We used
relativistic 2.5 MeV electrons to induce vacancy-interstitial (Frenkel) pairs
that act as efficient point-like scattering centers. Upon increasing dose of
irradiation, the superconducting transition temperature decreases
dramatically. In the absence of nodes in the order parameter this provides a
strong support for a sign-changing pairing. Simultaneously, in the
normal state, there is a strong violation of the Matthiessen's rule and a
decrease (surprisingly, at the same rate as ) of the magnetic transition
temperature , which indicates the itinerant nature of the long-range
magnetic order. Comparison of the hole-doped BaK122 with electron-doped
Ba(FeCo)As (FeCo122) with similar 110~K,
0.02, reveals significant differences in the normal states, with no
apparent Matthiessen's rule violation above on the electron-doped
side. We interpret these results in terms of the distinct impact of impurity
scattering on the competing itinerant antiferromagnetic and
superconducting orders
Interpretable and Generalizable Person Re-Identification with Query-Adaptive Convolution and Temporal Lifting
For person re-identification, existing deep networks often focus on
representation learning. However, without transfer learning, the learned model
is fixed as is, which is not adaptable for handling various unseen scenarios.
In this paper, beyond representation learning, we consider how to formulate
person image matching directly in deep feature maps. We treat image matching as
finding local correspondences in feature maps, and construct query-adaptive
convolution kernels on the fly to achieve local matching. In this way, the
matching process and results are interpretable, and this explicit matching is
more generalizable than representation features to unseen scenarios, such as
unknown misalignments, pose or viewpoint changes. To facilitate end-to-end
training of this architecture, we further build a class memory module to cache
feature maps of the most recent samples of each class, so as to compute image
matching losses for metric learning. Through direct cross-dataset evaluation,
the proposed Query-Adaptive Convolution (QAConv) method gains large
improvements over popular learning methods (about 10%+ mAP), and achieves
comparable results to many transfer learning methods. Besides, a model-free
temporal cooccurrence based score weighting method called TLift is proposed,
which improves the performance to a further extent, achieving state-of-the-art
results in cross-dataset person re-identification. Code is available at
https://github.com/ShengcaiLiao/QAConv.Comment: This is the ECCV 2020 version, including the appendi
Optimal Resources for Topological 2D Stabilizer Codes: Comparative Study
We study the resources needed to construct topological 2D stabilizer codes as
a way to estimate in part their efficiency and this leads us to perform a
comparative study of surface codes and color codes. This study clarifies the
similarities and differences between these two types of stabilizer codes. We
compute the error correcting rate for surface codes and color
codes in several instances. On the torus, typical values are and
, but we find that the optimal values are and . For
planar codes, a typical value is , while we find that the optimal values
are and . In general, a color code encodes twice as much
logical qubits as a surface code does.Comment: revtex, 6 pages, 7 figure
Thermalized Displaced Squeezed Thermal States
In the coordinate representation of thermofield dynamics, we investigate the
thermalized displaced squeezed thermal state which involves two temperatures
successively. We give the wavefunction and the matrix element of the density
operator at any time, and accordingly calculate some quantities related to the
position, momentum and particle number operator, special cases of which are
consistent with the results in the literature. The two temperatures have
diffenent correlations with the squeeze and coherence components. Moreover,
different from the properties of the position and momentum, the average value
and variance of the particle number operator as well as the second-order
correlation function are time-independent.Comment: 7 pages, no figures, Revtex fil
A competing order scenario of two-gap behavior in hole doped cuprates
Angle-dependent studies of the gap function provide evidence for the
coexistence of two distinct gaps in hole doped cuprates, where the gap near the
nodal direction scales with the superconducting transition temperature ,
while that in the antinodal direction scales with the pseudogap temperature. We
present model calculations which show that most of the characteristic features
observed in the recent angle-resolved photoemission spectroscopy (ARPES) as
well as scanning tunneling microscopy (STM) two-gap studies are consistent with
a scenario in which the pseudogap has a non-superconducting origin in a
competing phase. Our analysis indicates that, near optimal doping,
superconductivity can quench the competing order at low temperatures, and that
some of the key differences observed between the STM and ARPES results can give
insight into the superlattice symmetry of the competing order.Comment: 9 pages, 7 fig
Critical currents, flux-creep activation energy and potential barriers for the vortex motion from the flux creep experiments
We present an experimental study of thermally activated flux creep in a
superconducting ring-shaped epitaxial YBCO film as well as a new way of
analyzing the experimental data. The measurements were made in a wide range of
temperatures between 10 and 83 K. The upper temperature limit was dictated by
our experimental technique and at low temperatures we were limited by a
crossover to quantum tunneling of vortices. It is shown that the experimental
data can very well be described by assuming a simple thermally activated
hopping of vortices or vortex bundles over potential barriers, whereby the
hopping flux objects remain the same for all currents and temperatures. The new
procedure of data analysis also allows to establish the current and temperature
dependencies of the flux-creep activation energy U, as well as the temperature
dependence of the critical current Ic, from the flux-creep rates measured at
different temperatures. The variation of the activation energy with current,
U(I/Ic), is then used to reconstruct the profile of the potential barriers in
real space.Comment: 12 pages, 13 Postscript figures, Submitted to Physical Review
Effects of mismatched transmissions on two-mode squeezing and EPR correlations with a slow light medium
We theoretically discuss the preservation of squeezing and continuous
variable entanglement of two mode squeezed light when the two modes are
subjected to unequal transmission. One of the modes is transmitted through a
slow light medium while the other is sent through an optical fiber of unit
transmission. Balanced homodyne detection is used to check the presence of
squeezing. It is found that loss of squeezing occurs when the mismatch in the
transmission of the two modes is greater than 40% while near ideal squeezing is
preserved when the transmissions are equal. We also discuss the effect of this
loss on continuous variable entanglement using strong and weak EPR criteria and
possible applications for this experimental scheme.Comment: 7 pages, 4 figure
- …