1,122 research outputs found
Influence of nano-mechanical properties on single electron tunneling: A vibrating Single-Electron Transistor
We describe single electron tunneling through molecular structures under the
influence of nano-mechanical excitations. We develop a full quantum mechanical
model, which includes charging effects and dissipation, and apply it to the
vibrating C single electron transistor experiment by Park {\em et al.}
{[Nature {\bf 407}, 57 (2000)].} We find good agreement and argue vibrations to
be essential to molecular electronic systems. We propose a mechanism to realize
negative differential conductance using local bosonic excitations.Comment: 7 pages, 6 figure
Properties of Galaxy Groups in the SDSS: I.-- The Dependence of Colour, Star Formation, and Morphology on Halo Mass
Using a large galaxy group catalogue constructed from the SDSS, we
investigate the correlation between various galaxy properties and halo mass. We
split the population of galaxies in early types, late types, and intermediate
types, based on their colour and specific star formation rate. At fixed
luminosity, the early type fraction increases with increasing halo mass. Most
importantly, this mass dependence is smooth and persists over the entire mass
range probed, without any break or feature at any mass scale. We argue that the
previous claim of a characteristic feature on galaxy group scales is an
artefact of the environment estimators used. At fixed halo mass, the luminosity
dependence of the type fractions is surprisingly weak: galaxy type depends more
strongly on halo mass than on luminosity. We also find that the early type
fraction decreases with increasing halo-centric radius. Contrary to previous
studies, we find that this radial dependence is also present in low mass
haloes. The properties of satellite galaxies are strongly correlated with those
of their central galaxy. In particular, the early type fraction of satellites
is significantly higher in a halo with an early type central galaxy than in a
halo of the same mass but with a late type central galaxy. This phenomenon,
which we call `galactic conformity', is present in haloes of all masses and for
satellites of all luminosities. Finally, the fraction of intermediate type
galaxies is always ~20 percent, independent of luminosity, independent of halo
mass, independent of halo-centric radius, and independent of whether the galaxy
is a central galaxy or a satellite galaxy. We discuss the implications of all
these findings for galaxy formation and evolution.Comment: 28 pages, 15 figures. Submitted for publication in MNRA
Observational Evidence for an Age Dependence of Halo Bias
We study the dependence of the cross-correlation between galaxies and galaxy
groups on group properties. Confirming previous results, we find that the
correlation strength is stronger for more massive groups, in good agreement
with the expected mass dependence of halo bias. We also find, however, that for
groups of the same mass, the correlation strength depends on the star formation
rate (SFR) of the central galaxy: at fixed mass, the bias of galaxy groups
decreases as the SFR of the central galaxy increases. We discuss these findings
in light of the recent findings by Gao et al (2005) that halo bias depends on
halo formation time, in that halos that assemble earlier are more strongly
biased. We also discuss the implication for galaxy formation, and address a
possible link to galaxy conformity, the observed correlation between the
properties of satellite galaxies and those of their central galaxy.Comment: 4 pages, 4 figures, Accepted for publication in ApJ Letters. Figures
3 and 4 replaced. The bias dependence on the central galaxy luminosity is
omitted due to its sensitivity to the mass mode
The Importance of Satellite Quenching for the Build-Up of the Red Sequence of Present Day Galaxies
In the current paradigm, red sequence galaxies are believed to have formed as
blue disk galaxies that subsequently had their star formation quenched. Since
red-sequence galaxies typically have an early-type morphology, the transition
from the blue to the red sequence also involves a morphological transformation.
In this paper we study the impact of transformation mechanisms that operate
only on satellite galaxies, such as strangulation, ram-pressure stripping and
galaxy harassment. Using a large galaxy group catalogue constructed from the
SDSS, we compare the colors and concentrations of satellites galaxies to those
of central galaxies of the same stellar mass, adopting the hypothesis that the
latter are the progenitors of the former. On average, satellites are redder and
more concentrated than central galaxies of the same stellar mass.
Central-satellite pairs that are matched in both stellar mass and color,
however, show no average concentration difference, indicating that the
transformation mechanisms affect color more than morphology. The color and
concentration differences of matched central-satellite pairs are completely
independent of the halo mass of the satellite galaxy, indicating that
satellite-specific transformation mechanisms are equally efficient in haloes of
all masses. This strongly favors strangulation as the main quenching mechanism
for satellite galaxies. Finally, we determine the relative importance of
satellite quenching for the build-up of the red sequence. We find that roughly
70 percent of red sequence satellite galaxies with a stellar mass of 10^9 Msun
had their star formation quenched as satellites. This drops rapidly to zero
with increasing stellar mass, indicating that a significant fraction of red
satellites were already quenched before they became a satellite.Comment: 14 pages, 10 figures. Submitted for publication in MNRA
The clustering of SDSS galaxy groups: mass and color dependence
We use a sample of galaxy groups selected from the SDSS DR 4 with an adaptive
halo-based group finder to probe how the clustering strength of groups depends
on their masses and colors. In particular, we determine the relative biases of
groups of different masses, as well as that of groups with the same mass but
with different colors. In agreement with previous studies, we find that more
massive groups are more strongly clustered, and the inferred mass dependence of
the halo bias is in good agreement with predictions for the CDM
cosmology. Regarding the color dependence, we find that groups with red
centrals are more strongly clustered than groups of the same mass but with blue
centrals. Similar results are obtained when the color of a group is defined to
be the total color of its member galaxies. The color dependence is more
prominent in less massive groups and becomes insignificant in groups with
masses \gta 10^{14}\msunh. We construct a mock galaxy redshift survey
constructed from the large Millenium simulation that is populated with galaxies
according to the semi-analytical model of Croton et al. Applying our group
finder to this mock survey, and analyzing the mock data in exactly the same way
as the true data, we are able to accurately recover the intrinsic mass and
color dependencies of the halo bias in the model. This suggests that our group
finding algorithm and our method of assigning group masses do not induce
spurious mass and/or color dependencies in the group-galaxy correlation
function. The semi-analytical model reveals the same color dependence of the
halo bias as we find in our group catalogue. In halos with M\sim
10^{12}\msunh, though, the strength of the color dependence is much stronger
in the model than in the data.Comment: 16 pages, 14 figures, Accepted for publication in ApJ. In the new
version, we add the bias of the shuffled galaxy sample. The errors are
estimated according to the covariance matrix of the GGCCF, which is then
diagonalize
Properties of Galaxy Groups in the SDSS: II.- AGN Feedback and Star Formation Truncation
Successfully reproducing the galaxy luminosity function and the bimodality in
the galaxy distribution requires a mechanism that can truncate star formation
in massive haloes. Current models of galaxy formation consider two such
truncation mechanisms: strangulation, which acts on satellite galaxies, and AGN
feedback, which predominantly affects central galaxies. The efficiencies of
these processes set the blue fraction of galaxies as function of galaxy
luminosity and halo mass. In this paper we use a galaxy group catalogue
extracted from the Sloan Digital Sky Survey (SDSS) to determine these
fractions. To demonstrate the potential power of this data as a benchmark for
galaxy formation models, we compare the results to the semi-analytical model
for galaxy formation of Croton et al. (2006). Although this model accurately
fits the global statistics of the galaxy population, as well as the shape of
the conditional luminosity function, there are significant discrepancies when
the blue fraction of galaxies as a function of mass and luminosity is compared
between the observations and the model. In particular, the model predicts (i)
too many faint satellite galaxies in massive haloes, (ii) a blue fraction of
satellites that is much too low, and (iii) a blue fraction of centrals that is
too high and with an inverted luminosity dependence. In the same order, we
argue that these discrepancies owe to (i) the neglect of tidal stripping in the
semi-analytical model, (ii) the oversimplified treatment of strangulation, and
(iii) improper modeling of dust extinction and/or AGN feedback. The data
presented here will prove useful to test and calibrate future models of galaxy
formation and in particular to discriminate between various models for AGN
feedback and other star formation truncation mechanisms.Comment: 16 pages, 5 figures, submitted to MNRA
Modeling Luminosity-Dependent Galaxy Clustering Through Cosmic Time
We employ high-resolution dissipationless simulations of the concordance LCDM
cosmology to model the observed luminosity dependence and evolution of galaxy
clustering through most of the age of the universe, from z~5 to z~0. We use a
simple, non-parametric model which monotonically relates galaxy luminosities to
the maximum circular velocity of dark matter halos (V_max) by preserving the
observed galaxy luminosity function in order to match the halos in simulations
with observed galaxies. The novel feature of the model is the use of the
maximum circular velocity at the time of accretion, V_max,acc, for subhalos,
the halos located within virial regions of larger halos. We argue that for
subhalos in dissipationless simulations, V_max,acc reflects the luminosity and
stellar mass of the associated galaxies better than the circular velocity at
the epoch of observation, V_max,now. The simulations and our model L-V_max
relation predict the shape, amplitude, and luminosity dependence of the
two-point correlation function in excellent agreement with the observed galaxy
clustering in the SDSS data at z~0 and in the DEEP2 samples at z~1 over the
entire probed range of projected separations, 0.1<r_p/(Mpc/h)<10.0. In
particular, the small-scale upturn of the correlation function from the
power-law form in the SDSS and DEEP2 luminosity-selected samples is reproduced
very well. At z~3-5, our predictions also match the observed shape and
amplitude of the angular two-point correlation function of Lyman-break galaxies
(LBGs) on both large and small scales, including the small-scale upturn.Comment: 16 pages 11 figures, ApJ in pres
The cross-correlation between galaxies of different luminosities and Colors
We study the cross-correlation between galaxies of different luminosities and
colors, using a sample selected from the SDSS Dr 4. Galaxies are divided into 6
samples according to luminosity, and each of these samples is divided into red
and blue subsamples. Projected auto-correlation and cross-correlation is
estimated for these subsample. At projected separations r_p > 1\mpch, all
correlation functions are roughly parallel, although the correlation amplitude
depends systematically on luminosity and color. On r_p < 1\mpch, the auto- and
cross-correlation functions of red galaxies are significantly enhanced relative
to the corresponding power laws obtained on larger scales. Such enhancement is
absent for blue galaxies and in the cross-correlation between red and blue
galaxies. We esimate the relative bias factor on scales r > 1\mpch for each
subsample using its auto-correlation function and cross-correlation functions.
The relative bias factors obtained from different methods are similar. For blue
galaxies the luminosity-dependence of the relative bias is strong over the
luminosity range probed (-23.0<M_r < -18.0),but for red galaxies the dependence
is weaker and becomes insignificant for luminosities below L^*. To examine
whether a significant stochastic/nonlinear component exists in the bias
relation, we study the ratio R_ij= W_{ii}W_{jj}/W_{ij}^2, where W_{ij} is the
projected correlation between subsample i and j. We find that the values of
R_ij are all consistent with 1 for all-all, red-red and blue-blue samples,
however significantly larger than 1 for red-blue samples. For faint red - faint
blue samples the values of R_{ij} are as high as ~ 2 on small scales r_p < 1
\mpch and decrease with increasing r_p.Comment: 25 pages, 18 figures, Accepted for publication in Ap
Recommended from our members
Application of Design of Experiments (DOE) on the Processing of Rapid Prototyped Samples
The purpose of this experiment was to improve the Fused Deposition Modeling Process by
examining the tensile strength of samples fabricated in a Stratasys FDM 1650 Machine utilizing
the methods of Design of Experiments. A two-level, four-factor, full factorial experiment was
conducted. The selected factors were temperature, air gap, slice thickness, and raster orientation.
A regression equation determined the level each factor should be set in order to optimize the
FDM machine settings. It was found that single factors - small air gap, small layer thickness
and low raster orientation, as well as the interaction between high temperature and small layer
thickness yielded the greatest effect the response.Mechanical Engineerin
- …