938 research outputs found

    Contrasting Pressure Effects in Sr2VFeAsO3 and Sr2ScFePO3

    Full text link
    We report the resistivity measurements under pressure of two Fe-based superconductors with a thick perovskite oxide layer, Sr2VFeAsO3 and Sr2ScFePO3. The superconducting transition temperature Tc of Sr2VFeAsO3 markedly increases with increasing pressure. Its onset value, which was Tc{onset}=36.4 K at ambient pressure, increases to Tc{onset}=46.0 K at ~4 GPa, ensuring the potential of the "21113" system as a high-Tc material. However, the superconductivity of Sr2ScFePO3 is strongly suppressed under pressure. The Tc{onset} of ~16 K decreases to ~5 K at ~4 GPa, and the zero-resistance state is almost lost. We discuss the factor that induces this contrasting pressure effect.Comment: 5 pages, 4 figures, to be published in J. Phys. Soc. Jpn. No.12 (2009

    Band structure of SrFeAsF and CaFeAsF as parent phases for a new group of oxygen-free FeAs superconductors

    Full text link
    By means of first-principle FLAPW-GGA calculations, we have investigated the electronic properties of the newly discovered layered quaternary systems SrFeAsF and CaFeAsF as parent phases for a new group of oxygen-free FeAs superconductors. The electronic bands, density of states, Fermi surfaces, atomic charges, together with Sommerfeld coefficients and molar Pauli paramagnetic susceptibility have been evaluated and discussed in comparison with oxyarsenide LaFeAsO - a parent phase for a new class of high-temperature (Tc about 26-56K) oxygen-containing FeAs superconductors. Similarity of our data for SrFeAsF and CaFeAsF with the band structure of oxygen-containing FeAs superconducting materials may be considered as theoretical background specifying the possibility of superconductivity in these oxygen-free systems.Comment: 12 pages, 3 figure

    Electronic Structures of CaAlSi with Different Stacking AlSi Layers by First-Principles Calculations

    Full text link
    The full-potential linear augmented plane-wave calculations have been applied to investigate the systematic change of electronic structures in CaAlSi due to different stacking sequences of AlSi layers. The present ab-initio calculations have revealed that the multistacking, buckling and 60 degrees rotation of AlSi layer affect the electronic band structure in this system. In particular, such a structural perturbation gives rise to the disconnected and cylindrical Fermi surface along the M-L lines of the hexagonal Brillouin zone. This means that multistacked CaAlSi with the buckling AlSi layers increases degree of two-dimensional electronic characters, and it gives us qualitative understanding for the quite different upper critical field anisotropy between specimens with and without superstructure as reported previously.Comment: 4 pages, 4 figures, to be published in J. Phys. Soc. Jp

    Full Relativistic Electronic Structure and Fermi Surface Sheets of the First Honeycomb-Lattice Pnictide Superconductor SrPtAs

    Full text link
    We report full-potential density functional theory (DFT)-based {\it ab initio} band structure calculations to investigate electronic structure properties of the first pnictide superconductor with a honeycomb-lattice structure: SrPtAs. As a result, electronic bands, density of states, Fermi velocities and the topology of the Fermi surface for SrPtAs are obtained. These quantities are discussed in comparison to the first available experimental data. Predictions for future measurements are provided

    Effects of Ru Substitution on Dimensionality and Electron Correlations in Ba(Fe_{1-x}Ru_x)_2As_2

    Full text link
    We report a systematic angle-resolved photoemission spectroscopy study on Ba(Fe1−x_{1-x}Rux_x)2_2As2_2 for a wide range of Ru concentrations (0.15 ≤\leq \emph{x} ≤\leq 0.74). We observed a crossover from two-dimension to three-dimension for some of the hole-like Fermi surfaces with Ru substitution and a large reduction in the mass renormalization close to optimal doping. These results suggest that isovalent Ru substitution has remarkable effects on the low-energy electron excitations, which are important for the evolution of superconductivity and antiferromagnetism in this system.Comment: 4 pages, 4 figure

    Pressure Dependence of Superconducting Transition Temperature on Perovskite-Type Fe-Based Superconductors and NMR Study of Sr2VFeAsO3

    Full text link
    We report the pressure dependences of the superconducting transition temperature (T_c) in several perovskite-type Fe-based superconductors through the resistivity measurements up to ~4 GPa. In Ca_4(Mg,Ti)_3Fe_2As_2O_y with the highest T_c of 47 K in the present study, the T_c keeps almost constant up to ~1 GPa, and starts to decrease above it. From the comparison among several systems, we obtained a tendency that low T_c with the longer a-axis length at ambient pressure increases under pressure, but high T_c with the shorter a-axis length at ambient pressure hardly increases. We also report the ^75As-NMR results on Sr_2VFeAsO_3. NMR spectrum suggests that the magnetic ordering occurs at low temperatures accompanied by some inhomogeneity. In the superconducting state, we confirmed the anomaly by the occurrence of superconductivity in the nuclear spin lattice relaxation rate 1/T_1, but the spin fluctuations unrelated with the superconductivity are dominant. It is conjectured that the localized V-3d moments are magnetically ordered and their electrons do not contribute largely to the Fermi surface and the superconductivity in Sr_2VFeAsO_3.Comment: 7 pages, 9 figure

    Magnetic Ordering in V-Layers of the Superconducting System of Sr2VFeAsO3

    Full text link
    Results of transport, magnetic, thermal, and 75As-NMR measurements are presented for superconducting Sr2VFeAsO3 with an alternating stack of FeAs and perovskite-like block layers. Although apparent anomalies in magnetic and thermal properties have been observed at ~150 K, no anomaly in transport behaviors has been observed at around the same temperature. These results indicate that V ions in the Sr2VO3-block layers have localized magnetic moments and that V-electrons do not contribute to the Fermi surface. The electronic characteristics of Sr2VFeAsO3 are considered to be common to those of other superconducting systems with Fe-pnictogen layers.Comment: 4 pages, 4 figures, To appear in JPSJ 79 (2010) 12371

    Electronic Structure of New AFFeAs Prototype of Iron Arsenide Superconductors

    Full text link
    This work is provoked by recent discovery of new class prototype systems AFFeAs (A=Sr,Ca) of novel layered ironpnictide High-Tc superconductors (Tc=36K). Here we report ab initio LDA results for electronic structure of the AFFeAs systems. We provide detailed comparison between electronic properties of both new systems and reference LaOFeAs (La111) compound. In the vicinity of the Fermi level all three systems have essentially the same band dispersions. However for iron fluoride systems F(2p) states were found to be separated in energy from As(4p) ones in contrast to La111, where O(2p) states strongly overlaps with As(4p). Thus it should be more plausible to include only Fe(3d) and As(4p) orbitals into a realistic noninteracting model than for La111. Moreover Sr substitution with smaller ionic radius Ca in AFFeAs materials leads to a lattice contruction and stronger Fe(3d)-As(4p) hybridization resulting in smaller value of the density of states at the Fermi level in the case of Ca compound. So to some extend Ca system reminds RE111 with later Rare Earths. However Fermi surface of new fluorides is found to be nearly perfect two-dimensional. Also we do not expect strong dependence of superconducting properties with respect to different types of A substitutes.Comment: 5 pages, 4 figure

    Electronic structure and possible pseudogap behavior in iron based superconductors

    Full text link
    Starting from the simplified analytic model of electronic spectrum of iron - pnictogen (chalcogen) high - temperature superconductors close to the Fermi level, we discuss the influence of antiferromagneting (AFM)scattering both for stoichiometric case and the region of possible short - range order AFM fluctuations in doped compounds. Qualitative picture of the evolution of electronic spectrum and Fermi surfaces (FS) for different dopings is presented, with the aim of comparison with existing and future ARPES experiments. Both electron and hole dopings are considered and possible pseudogap behavior connected with partial FS "destruction" is demonstrated, explaining some recent experiments.Comment: 5 pages, 4 figures, published versio
    • …
    corecore