11,022 research outputs found
Random matrix theory for CPA: Generalization of Wegner's --orbital model
We introduce a generalization of Wegner's -orbital model for the
description of randomly disordered systems by replacing his ensemble of
Gaussian random matrices by an ensemble of randomly rotated matrices. We
calculate the one- and two-particle Green's functions and the conductivity
exactly in the limit . Our solution solves the CPA-equation of the
-Anderson model for arbitrarily distributed disorder. We show how the
Lloyd model is included in our model.Comment: 3 pages, Rev-Te
Quantitative assessment of pinning forces and the superconducting gap in NbN thin films from complementary magnetic force microscopy and transport measurements
Epitaxial niobium-nitride thin films with a critical temperature of Tc=16K
and a thickness of 100nm were fabricated on MgO(100) substrates by pulsed laser
deposition. Low-temperature magnetic force microscopy (MFM) images of the
supercurrent vortices were measured after field cooling in a magnetic field of
3mT at various temperatures. Temperature dependence of the penetration depth
has been evaluated by a two-dimensional fitting of the vortex profiles in the
monopole-monopole model. Its subsequent fit to a single s-wave gap function
results in the superconducting gap amplitude Delta(0) = 2.9 meV = 2.1*kB*Tc, in
perfect agreement with previous reports. The pinning force has been
independently estimated from local depinning of individual vortices by lateral
forces exerted by the MFM tip and from transport measurements. A good
quantitative agreement between the two techniques shows that for low fields, B
<< Hc2, MFM is a powerful and reliable technique to probe the local variations
of the pinning landscape. We also demonstrate that the monopole model can be
successfully applied even for thin films with a thickness comparable to the
penetration depth.Comment: 6 pages, 6 figures, 2 table
Rigorous mean field model for CPA: Anderson model with free random variables
A model of a randomly disordered system with site-diagonal random energy
fluctuations is introduced. It is an extension of Wegner's -orbital model to
arbitrary eigenvalue distribution in the electronic level space. The new
feature is that the random energy values are not assumed to be independent at
different sites but free. Freeness of random variables is an analogue of the
concept of independence for non-commuting random operators. A possible
realization is the ensemble of at different lattice-sites randomly rotated
matrices. The one- and two-particle Green functions of the proposed hamiltonian
are calculated exactly. The eigenstates are extended and the conductivity is
nonvanishing everywhere inside the band. The long-range behaviour and the
zero-frequency limit of the two-particle Green function are universal with
respect to the eigenvalue distribution in the electronic level space. The
solutions solve the CPA-equation for the one- and two-particle Green function
of the corresponding Anderson model. Thus our (multi-site) model is a rigorous
mean field model for the (single-site) CPA. We show how the Llyod model is
included in our model and treat various kinds of noises.Comment: 24 pages, 2 diagrams, Rev-Tex. Diagrams are available from the
authors upon reques
Cumulant Expansions and the Spin-Boson Problem
The dynamics of the dissipative two-level system at zero temperature is
studied using three different cumulant expansion techniques. The relative
merits and drawbacks of each technique are discussed. It is found that a new
technique, the non-crossing cumulant expansion, appears to embody the virtues
of the more standard cumulant methods.Comment: 26 pages, LaTe
Tungsten fibre-reinforced composites for advanced plasma facing components
AbstractThe European Fusion Roadmap foresees water cooled plasma facing components in a first DEMO design in order to provide enough margin for the cooling capacity and to only moderately extrapolate the technology which was developed and tested for ITER. In order to make best use of the water cooling concept copper (Cu) and copper-chromium-zirconium alloy (CuCrZr) are envisaged as heat sink whereas as armour tungsten (W) based materials will be used. Combining both materials in a high heat flux component asks for an increase of their operational range towards higher temperature in case of Cu/CuCrZr and lower temperatures for W. A remedy for both issues- brittleness of W and degrading strength of CuCrZr- could be the use of W fibres (Wf) in W and Cu based composites. Fibre preforms could be manufactured with industrially viable textile techniques. Flat textiles with a combination of 150/70 µm W wires have been chosen for layered deposition of tungsten-fibre reinforced tungsten (Wf/W) samples and tubular multi-layered braidings with W wire thickness of 50 µm were produced as a preform for tungsten-fibre reinforced copper (Wf /Cu) tubes. Cu melt infiltration was performed together with an industrial partner resulting in sample tubes without any blowholes. Property estimation by mean field homogenisation predicts strongly enhanced strength of the Wf/CuCrZr composite compared to its pure CuCrZr counterpart. Wf /W composites show very high toughness and damage tolerance even at room temperature. Cyclic load tests reveal that the extrinsic toughening mechanisms counteracting the crack growth are active and stable. FEM simulations of the Wf/W composite suggest that the influence of fibre debonding, which is an integral part of the toughening mechanisms, and reduced thermal conductivity of the fibre due to the necessary interlayers do not strongly influence the thermal properties of future components
Phase diffusion as a model for coherent suppression of tunneling in the presence of noise
We study the stabilization of coherent suppression of tunneling in a driven
double-well system subject to random periodic function ``kicks''. We
model dissipation due to this stochastic process as a phase diffusion process
for an effective two-level system and derive a corresponding set of Bloch
equations with phase damping terms that agree with the periodically kicked
system at discrete times. We demonstrate that the ability of noise to localize
the system on either side of the double-well potenital arises from overdamping
of the phase of oscillation and not from any cooperative effect between the
noise and the driving field. The model is investigated with a square wave
drive, which has qualitatively similar features to the widely studied
cosinusoidal drive, but has the additional advantage of allowing one to derive
exact analytic expressions.Comment: 17 pages, 4 figures, submitted to Phys. Rev.
Symmetry and disorder of the vitreous vortex lattice in an overdoped BaFe_{2-x}Co_xAs_2 superconductor: Indication for strong single-vortex pinning
The disordered flux line lattice in single crystals of the slightly overdoped
aFe_{2-x}Co_xAs_2 (x = 0.19, Tc = 23 K) superconductor is studied by
magnetization measurements, small-angle neutron scattering (SANS), and magnetic
force microscopy (MFM). In the whole range of magnetic fields up to 9 T, vortex
pinning precludes the formation of an ordered Abrikosov lattice. Instead, a
vitreous vortex phase (vortex glass) with a short-range hexagonal order is
observed. Statistical processing of MFM datasets lets us directly measure its
radial and angular distribution functions and extract the radial correlation
length \zeta. In contrast to predictions of the collective pinning model, no
increase in the correlated volume with the applied field is observed. Instead,
we find that \zeta decreases as 1.3*R1 ~ H^(-1/2) over four decades of the
applied magnetic field, where R1 is the radius of the first coordination shell
of the vortex lattice. Such universal scaling of \zeta implies that the vortex
pinning in iron arsenides remains strong even in the absence of static
magnetism. This result is consistent with all the real- and reciprocal-space
vortex-lattice measurements in overdoped as-grown aFe_{2-x}Co_xAs_2 published
to date and is thus sample-independent. The failure of the collective pinning
model suggests that the vortices remain in the single-vortex pinning limit even
in high magnetic fields up to 9 T.Comment: 11 pages, 6 figure
Symmetry and disorder of the vitreous vortex lattice in an overdoped BaFe_{2-x}Co_xAs_2 superconductor: Indication for strong single-vortex pinning
The disordered flux line lattice in single crystals of the slightly overdoped
aFe_{2-x}Co_xAs_2 (x = 0.19, Tc = 23 K) superconductor is studied by
magnetization measurements, small-angle neutron scattering (SANS), and magnetic
force microscopy (MFM). In the whole range of magnetic fields up to 9 T, vortex
pinning precludes the formation of an ordered Abrikosov lattice. Instead, a
vitreous vortex phase (vortex glass) with a short-range hexagonal order is
observed. Statistical processing of MFM datasets lets us directly measure its
radial and angular distribution functions and extract the radial correlation
length \zeta. In contrast to predictions of the collective pinning model, no
increase in the correlated volume with the applied field is observed. Instead,
we find that \zeta decreases as 1.3*R1 ~ H^(-1/2) over four decades of the
applied magnetic field, where R1 is the radius of the first coordination shell
of the vortex lattice. Such universal scaling of \zeta implies that the vortex
pinning in iron arsenides remains strong even in the absence of static
magnetism. This result is consistent with all the real- and reciprocal-space
vortex-lattice measurements in overdoped as-grown aFe_{2-x}Co_xAs_2 published
to date and is thus sample-independent. The failure of the collective pinning
model suggests that the vortices remain in the single-vortex pinning limit even
in high magnetic fields up to 9 T.Comment: 11 pages, 6 figure
- …