14,669 research outputs found

    Teaching statistical physics by thinking about models and algorithms

    Full text link
    We discuss several ways of illustrating fundamental concepts in statistical and thermal physics by considering various models and algorithms. We emphasize the importance of replacing students' incomplete mental images by models that are physically accurate. In some cases it is sufficient to discuss the results of an algorithm or the behavior of a model rather than having students write a program.Comment: 21 pages, 4 figures, submitted to the American Journal of Physic

    Lax Operator for the Quantised Orthosymplectic Superalgebra U_q[osp(2|n)]

    Full text link
    Each quantum superalgebra is a quasi-triangular Hopf superalgebra, so contains a \textit{universal RR-matrix} in the tensor product algebra which satisfies the Yang-Baxter equation. Applying the vector representation π\pi, which acts on the vector module VV, to one side of a universal RR-matrix gives a Lax operator. In this paper a Lax operator is constructed for the CC-type quantum superalgebras Uq[osp(2∣n)]U_q[osp(2|n)]. This can in turn be used to find a solution to the Yang-Baxter equation acting on V⊗V⊗WV \otimes V \otimes W where WW is an arbitrary Uq[osp(2∣n)]U_q[osp(2|n)] module. The case W=VW=V is included here as an example.Comment: 15 page

    On implicit-factorization constraint preconditioners

    Get PDF
    Recently Dollar and Wathen [14] proposed a class of incomplete factorizations for saddle-point problems, based upon earlier work by Schilders [40]. In this paper, we generalize this class of preconditioners, and examine the spectral implications of our approach. Numerical tests indicate the efficacy of our preconditioners

    On solving trust-region and other regularised subproblems in optimization

    Get PDF
    The solution of trust-region and regularisation subproblems which arise in unconstrained optimization is considered. Building on the pioneering work of Gay, Mor´e and Sorensen, methods which obtain the solution of a sequence of parametrized linear systems by factorization are used. Enhancements using high-order polynomial approximation and inverse iteration ensure that the resulting method is both globally and asymptotically at least superlinearly convergent in all cases, including in the notorious hard case. Numerical experiments validate the effectiveness of our approach. The resulting software is available as packages TRS and RQS as part of the GALAHAD optimization library, and is especially designed for large-scale problems

    Optimization in Gradient Networks

    Full text link
    Gradient networks can be used to model the dominant structure of complex networks. Previous works have focused on random gradient networks. Here we study gradient networks that minimize jamming on substrate networks with scale-free and Erd\H{o}s-R\'enyi structure. We introduce structural correlations and strongly reduce congestion occurring on the network by using a Monte Carlo optimization scheme. This optimization alters the degree distribution and other structural properties of the resulting gradient networks. These results are expected to be relevant for transport and other dynamical processes in real network systems.Comment: 5 pages, 4 figure

    Punctuated Equilibrium in Software Evolution

    Full text link
    The approach based on paradigm of self-organized criticality proposed for experimental investigation and theoretical modelling of software evolution. The dynamics of modifications studied for three free, open source programs Mozilla, Free-BSD and Emacs using the data from version control systems. Scaling laws typical for the self-organization criticality found. The model of software evolution presenting the natural selection principle is proposed. The results of numerical and analytical investigation of the model are presented. They are in a good agreement with the data collected for the real-world software.Comment: 4 pages, LaTeX, 2 Postscript figure

    Degenerate mixing of plasma waves on cold, magnetized single-species plasmas

    Get PDF
    In the cold-fluid dispersion relation ω = ω_p/[1+(k_⊥/k_z)^(2]1/2) for Trivelpiece-Gould waves on an infinitely long magnetized plasma cylinder, the transverse and axial wavenumbers appear only in the combination k_⊥/k_z. As a result, for any frequency ω<ω_p, there are infinitely many degenerate waves, all having the same value of k_⊥/k_z. On a cold finite-length plasma column, these degenerate waves reflect into one another at the ends; thus, each standing-wave normal mode of the bounded plasma is a mixture of many degenerate waves, not a single standing wave as is often assumed. A striking feature of the many-wave modes is that the short-wavelength waves often add constructively along resonance cones given by dz/dr = ±(ω_p^2/ω^2-1)^(1/2). Also, the presence of short wavelengths in the admixture for a predominantly long-wavelength mode enhances the viscous damping beyond what the single-wave approximation would predict. Here, numerical solutions are obtained for modes of a cylindrical plasma column with rounded ends. Exploiting the fact that the modes of a spheroidal plasma are known analytically (the Dubin modes), a perturbation analysis is used to investigate the mixing of low-order, nearly degenerate Dubin modes caused by small deformations of a plasma spheroid

    Nonequilibrium phase transitions and tricriticality in a three-dimensional lattice system with random-field competing kinetics

    Full text link
    We study a nonequilibrium Ising model that stochastically evolves under the simultaneous operation of several spin-flip mechanisms. In other words, the local magnetic fields change sign randomly with time due to competing kinetics. This dynamics models a fast and random diffusion of disorder that takes place in dilute metallic alloys when magnetic ions diffuse. We performe Monte Carlo simulations on cubic lattices up to L=60. The system exhibits ferromagnetic and paramagnetic steady states. Our results predict first-order transitions at low temperatures and large disorder strengths, which correspond to the existence of a nonequilibrium tricritical point at finite temperature. By means of standard finite-size scaling equations, we estimate the critical exponents in the low-field region, for which our simulations uphold continuous phase transitions.Comment: 14 pages, 7 figures, accepted for publication in Phys. Rev.
    • …
    corecore