690 research outputs found
Photosynthesis–irradiance parameters of marine phytoplankton: synthesis of a global data set
The photosynthetic performance of marine phytoplankton varies in response to a variety of factors,
environmental and taxonomic. One of the aims of the MArine primary Production: model Parameters from
Space (MAPPS) project of the European Space Agency is to assemble a global database of photosynthesis–
irradiance (P-E) parameters from a range of oceanographic regimes as an aid to examining the basin-scale
variability in the photophysiological response of marine phytoplankton and to use this information to improve
the assignment of P-E parameters in the estimation of global marine primary production using satellite data.
The MAPPS P-E database, which consists of over 5000 P-E experiments, provides information on the spatiotemporal
variability in the two P-E parameters (the assimilation number, PB
m , and the initial slope, �B, where the
superscripts B indicate normalisation to concentration of chlorophyll) that are fundamental inputs for models
(satellite-based and otherwise) of marine primary production that use chlorophyll as the state variable. Qualitycontrol
measures consisted of removing samples with abnormally high parameter values and flags were added to
denote whether the spectral quality of the incubator lamp was used to calculate a broad-band value of �B. The
MAPPS database provides a photophysiological data set that is unprecedented in number of observations and in
spatial coverage. The database will be useful to a variety of research communities, including marine ecologists,biogeochemical modellers, remote-sensing scientists and algal physiologists
A prospective study on rapid exome sequencing as a diagnostic test for multiple congenital anomalies on fetal ultrasound
Objective: Conventional genetic tests (quantitative fluorescent-PCR [QF-PCR] and single nucleotide polymorphism-array) only diagnose ~40% of fetuses showing ultrasound abnormalities. Rapid exome sequencing (rES) may improve this diagnostic yield, but includes challenges such as uncertainties in fetal phenotyping, variant interpretation, incidental unsolicited findings, and rapid turnaround times. In this study, we implemented rES in prenatal care to increase diagnostic yield. Methods: We prospectively studied 55 fetuses. Inclusion criteria were: (a) two or more independent major fetal anomalies, (b) hydrops fetalis or bilateral renal cysts alone, or (c) one major fetal anomaly and a first-degree relative with the same anomaly. In addition to conventional genetic tests, we performed trio rES analysis using a custom virtual gene panel of ~3850 Online Mendelian Inheritance in Man (OMIM) genes. Results: We established a genetic rES-based diagnosis in 8 out of 23 fetuses (35%) without QF-PCR or array abnormalities. Diagnoses included MIRAGE (SAMD9), Zellweger (PEX1), Walker-Warburg (POMGNT1), Noonan (PTNP11), Kabuki (KMT2D), and CHARGE (CHD7) syndrome and two cases of Osteogenesis Imperfecta type 2 (COL1A1). In six cases, rES diagnosis aided perinatal management. The median turnaround time was 14 (range 8-20) days. Conclusion: Implementing rES as a routine test in the prenatal setting is challenging but technically feasible, with a promising diagnostic yield and significant clinical relevance
Phytoplankton functional types from Space.
The concept of phytoplankton functional types has emerged as a useful approach to
classifying phytoplankton. It finds many applications in addressing some serious
contemporary issues facing science and society. Its use is not without challenges,
however. As noted earlier, there is no universally-accepted set of functional types,
and the types used have to be carefully selected to suit the particular problem being
addressed. It is important that the sum total of all functional types matches all
phytoplankton under consideration. For example, if in a biogeochemical study,
we classify phytoplankton as silicifiers, calcifiers, DMS-producers and nitrogen fix-
ers, then there is danger that the study may neglect phytoplankton that do not
contribute in any significant way to those functions, but may nevertheless be a
significant contributor to, say primary production. Such considerations often lead
to the adoption of a category of “other phytoplankton” in models, with no clear
defining traits assigned them, but that are nevertheless necessary to close budgets
on phytoplankton processes. Since this group is a collection of all phytoplankton
that defy classification according to a set of traits, it is difficult to model their physi-
ological processes. Our understanding of the diverse functions of phytoplankton is
still growing, and as we recognize more functions, there will be a need to balance the
desire to incorporate the increasing number of functional types in models against
observational challenges of identifying and mapping them adequately. Modelling
approaches to dealing with increasing functional diversity have been proposed,
for example, using the complex adaptive systems theory and system of infinite
diversity, as in the work of Bruggemann and Kooijman (2007). But it is unlikely that
remote-sensing approaches might be able to deal with anything but a few prominent
functional types. As long as these challenges are explicitly addressed, the functional-
type concept should continue to fill a real need to capture, in an economic fashion,
the diversity in phytoplankton, and remote sensing should continue to be a useful
tool to map them.
Remote sensing of phytoplankton functional types is an emerging field, whose
potential is not fully realised, nor its limitations clearly established. In this report,
we provide an overview of progress to date, examine the advantages and limitations
of various methods, and outline suggestions for further development. The overview
provided in this chapter is intended to set the stage for detailed considerations of
remote-sensing applications in later chapters.
In the next chapter, we examine various in situ methods that exist for observing
phytoplankton functional types, and how they relate to remote-sensing techniques.
In the subsequent chapters, we review the theoretical and empirical bases for the
existing and emerging remote-sensing approaches; assess knowledge about the
limitations, assumptions, and likely accuracy or predictive skill of the approaches;
provide some preliminary comparative analyses; and look towards future prospects
with respect to algorithm development, validation studies, and new satellite mis-
sions
Evaluation of the third- and fourth-generation GOCE Earth gravity field models with Australian terrestrial gravity data in spherical harmonics
In March 2013 the fourth generation of ESA’s (European Space Agency) global gravity field models, DIR4 (Bruinsma et al, 2010b) and TIM4 (Pail et al, 2010), generated from the GOCE (Gravity field and steady-state Ocean Circulation Explorer) gravity observation satellite were released. We evaluate the models using an independent ground truth data set of gravity anomalies over Australia. Combined with GRACE (Gravity Recovery and Climate Experiment) satellite gravity, a new gravity model is obtained that is used to perform comparisons with GOCE models in spherical harmonics. Over Australia, the new gravity model proves to have significantly higher accuracy in the degrees below 120 as compared to EGM2008 and seems to be at least comparable to the accuracy of this model between degree 150 and degree 260. Comparisons in terms of residual quasi-geoid heights, gravity disturbances, and radial gravity gradients evaluated on the ellipsoid and at approximate GOCE mean satellite altitude (h=250 km) show both fourth generation models to improve significantly w.r.t. their predecessors.Relatively, we find a root-mean-square improvement of 39 % for the DIR4 and 23 % for TIM4 over the respective third release models at a spatial scale of 100 km (degree 200). In terms of absolute errors TIM4 is found to perform slightly better in the bands from degree 120 up to degree 160 and DIR4 is found to perform slightly better than TIM4 from degree 170 up to degree 250. Our analyses cannot confirm the DIR4 formal error of 1 cm geoid height (0.35 mGal in terms of gravity) at degree 200. The formal errors of TIM4, with 3.2 cm geoid height (0.9 mGal in terms of gravity) at degree 200, seem to be realistic. Due to combination with GRACE and SLR data, the DIR models, at satellite altitude, clearly show lower RMS values compared to TIM models in the long wavelength part of the spectrum (below degree and order 120). Our study shows different spectral sensitivity of different functionals at ground level and at GOCE satellite altitude and establishes the link among these findings and the Meissl scheme (Rummel and van Gelderen in Manuscripta Geodaetica 20:379–385, 1995)
The Link between Innovation and Productivity in Estonia’s Service Sectors
The emerging literature on the characteristics of innovation processes in the service sector has paid relatively little attention to the links between innovation and productivity. In this paper we investigate how the innovation-productivity relationship differs across various subbranches of the service sector. For the analysis we use the CDM structural model consisting of equations for innovation expenditures, innovation output, productivity and exports. We use data from the community innovation surveys for Estonia. We show that innovation is associated with increased productivity in the service sector. The results indicate surprisingly that the effect of innovation on productivity is stronger in the less knowledge-intensive service sectors, despite the lower frequency of innovative activities and the results of earlier literature. Non-technological innovation only plays a positive role in some specifications, despite its expected importance especially among the service firms. An additional positive channel of the effects of innovation on productivity may function through increased exports.http://deepblue.lib.umich.edu/bitstream/2027.42/133027/1/wp1012.pd
CGIAR modeling approaches for resource-constrained scenarios: I. Accelerating crop breeding for a changing climate.
Crop improvement efforts aiming at increasing crop production (quantity, quality) and adapting to climate change have been subject of active research over the past years. But, the question remains 'to what extent can breeding gains be achieved under a changing climate, at a pace sufficient to usefully contribute to climate adaptation, mitigation and food security?'. Here, we address this question by critically reviewing how model-based approaches can be used to assist breeding activities, with particular focus on all CGIAR (formerly the Consultative Group on International Agricultural Research but now known simply as CGIAR) breeding programs. Crop modeling can underpin breeding efforts in many different ways, including assessing genotypic adaptability and stability, characterizing and identifying target breeding environments, identifying tradeoffs among traits for such environments, and making predictions of the likely breeding value of the genotypes. Crop modeling science within the CGIAR has contributed to all of these. However, much progress remains to be done if modeling is to effectively contribute to more targeted and impactful breeding programs under changing climates. In a period in which CGIAR breeding programs are undergoing a major modernization process, crop modelers will need to be part of crop improvement teams, with a common understanding of breeding pipelines and model capabilities and limitations, and common data standards and protocols, to ensure they follow and deliver according to clearly defined breeding products. This will, in turn, enable more rapid and better-targeted crop modeling activities, thus directly contributing to accelerated and more impactful breeding efforts.Online Version of Record before inclusion in an issue
Standards of Care for the Health of Transgender and Gender Diverse People, Version 8
Background: Transgender healthcare is a rapidly evolving interdisciplinary field. In the last decade, there has been an unprecedented increase in the number and visibility of transgender and gender diverse (TGD) people seeking support and gender-affirming medical treatment in parallel with a significant rise in the scientific literature in this area. The World Professional Association for Transgender Health (WPATH) is an international, multidisciplinary, professional association whose mission is to promote evidence-based care, education, research, public policy, and respect in transgender health. One of the main functions of WPATH is to promote the highest standards of health care for TGD people through the Standards of Care (SOC). The SOC was initially developed in 1979 and the last version (SOC-7) was published in 2012. In view of the increasing scientific evidence, WPATH commissioned a new version of the Standards of Care, the SOC-8. Aim: The overall goal of SOC-8 is to provide health care professionals (HCPs) with clinical guidance to assist TGD people in accessing safe and effective pathways to achieving lasting personal comfort with their gendered selves with the aim of optimizing their overall physical health, psychological well-being, and self-fulfillment. Methods: The SOC-8 is based on the best available science and expert professional consensus in transgender health. International professionals and stakeholders were selected to serve on the SOC-8 committee. Recommendation statements were developed based on data derived from independent systematic literature reviews, where available, background reviews and expert opinions. Grading of recommendations was based on the available evidence supporting interventions, a discussion of risks and harms, as well as the feasibility and acceptability within different contexts and country settings. Results: A total of 18 chapters were developed as part of the SOC-8. They contain recommendations for health care professionals who provide care and treatment for TGD people. Each of the recommendations is followed by explanatory text with relevant references. General areas related to transgender health are covered in the chapters Terminology, Global Applicability, Population Estimates, and Education. The chapters developed for the diverse population of TGD people include Assessment of Adults, Adolescents, Children, Nonbinary, Eunuchs, and Intersex Individuals, and people living in Institutional Environments. Finally, the chapters related to gender-affirming treatment are Hormone Therapy, Surgery and Postoperative Care, Voice and Communication, Primary Care, Reproductive Health, Sexual Health, and Mental Health. Conclusions: The SOC-8 guidelines are intended to be flexible to meet the diverse health care needs of TGD people globally. While adaptable, they offer standards for promoting optimal health care and guidance for the treatment of people experiencing gender incongruence. As in all previous versions of the SOC, the criteria set forth in this document for gender-affirming medical interventions are clinical guidelines; individual health care professionals and programs may modify these in consultation with the TGD person
Enhancing the capabilities of LIGO time-frequency plane searches through clustering
One class of gravitational wave signals LIGO is searching for consists of
short duration bursts of unknown waveforms. Potential sources include core
collapse supernovae, gamma ray burst progenitors, and mergers of binary black
holes or neutron stars. We present a density-based clustering algorithm to
improve the performance of time-frequency searches for such gravitational-wave
bursts when they are extended in time and/or frequency, and not sufficiently
well known to permit matched filtering. We have implemented this algorithm as
an extension to the QPipeline, a gravitational-wave data analysis pipeline for
the detection of bursts, which currently determines the statistical
significance of events based solely on the peak significance observed in
minimum uncertainty regions of the time-frequency plane. Density based
clustering improves the performance of such a search by considering the
aggregate significance of arbitrarily shaped regions in the time-frequency
plane and rejecting the isolated minimum uncertainty features expected from the
background detector noise. In this paper, we present test results for simulated
signals and demonstrate that density based clustering improves the performance
of the QPipeline for signals extended in time and/or frequency.Comment: 17 pages, 6 figures. Submitted to CQG on Dec 12, 2008; accepted on
June 18, 200
First M87 Event Horizon Telescope Results. VII. Polarization of the Ring
In 2017 April, the Event Horizon Telescope (EHT) observed the near-horizon region around the supermassive black hole at the core of the M87 galaxy. These 1.3 mm wavelength observations revealed a compact asymmetric ring-like source morphology. This structure originates from synchrotron emission produced by relativistic plasma located in the immediate vicinity of the black hole. Here we present the corresponding linear-polarimetric EHT images of the center of M87. We find that only a part of the ring is significantly polarized. The resolved fractional linear polarization has a maximum located in the southwest part of the ring, where it rises to the level of similar to 15%. The polarization position angles are arranged in a nearly azimuthal pattern. We perform quantitative measurements of relevant polarimetric properties of the compact emission and find evidence for the temporal evolution of the polarized source structure over one week of EHT observations. The details of the polarimetric data reduction and calibration methodology are provided. We carry out the data analysis using multiple independent imaging and modeling techniques, each of which is validated against a suite of synthetic data sets. The gross polarimetric structure and its apparent evolution with time are insensitive to the method used to reconstruct the image. These polarimetric images carry information about the structure of the magnetic fields responsible for the synchrotron emission. Their physical interpretation is discussed in an accompanying publication
Constraints on black-hole charges with the 2017 EHT observations of M87*
Our understanding of strong gravity near supermassive compact objects has recently improved thanks to the measurements made by the Event Horizon Telescope (EHT). We use here the M87* shadow size to infer constraints on the physical charges of a large variety of nonrotating or rotating black holes. For example, we show that the quality of the measurements is already sufficient to rule out that M87* is a highly charged dilaton black hole. Similarly, when considering black holes with two physical and independent charges, we are able to exclude considerable regions of the space of parameters for the doubly-charged dilaton and the Sen black holes
- …