261 research outputs found
Phase control of La2CuO4 in thin-film synthesis
The lanthanum copper oxide, La2CuO4, which is an end member of the prototype
high-Tc superconductors (La,Sr)2CuO4 and (La,Ba)2CuO4, crystallizes in the
"K2NiF4" structure in high-temperature bulk synthesis. The crystal chemistry,
however, predicts that La2CuO4 is at the borderline of the K2NiF4 stability and
that it can crystallize in the Nd2CuO4 structure at low synthesis temperatures.
In this article we demonstrate that low-temperature thin-film synthesis
actually crystallizes La2CuO4 in the Nd2CuO4 structure. We also show that the
phase control of "K2NiF4"-type La2CuO4 versus "Nd2CuO4"-type La2CuO4 can be
achieved by varying the synthesis temperature and using different substrates.Comment: 4 pages, 5 figures, submitted to PRB, revte
Electronic properties of hybrid organic/inorganic semiconductor pn-junctions
Hybrid inorganic/organic semiconductor heterojunctions are candidates to expand the scope of purely organic or inorganic junctions in electronic and optoelectronic devices. Comprehensive understanding of bulk and interface doping on the junction’s electronic properties is therefore desirable. In this work, we elucidate the energy level alignment and its mechanisms at a prototypical hybrid pn-junction comprising ZnO (n-type) and p-doped N,N′-di(1-naphthyl)-N,N′-diphenyl-(1,1′-biphenyl)-4,4′-diamine (α-NPD) as semiconductors, using photoelectron spectroscopy. The level alignment can be quantitatively described by the interplay of contact-induced band and energy level bending in the inorganic and organic component away from the interface, and an interface dipole due to the push-back effect. By adjusting the dopant concentration in α-NPD, the position of the frontier energy levels of ZnO can be varied by over 0.5 eV and that of α-NPD by over 1 eV. The tunability of this pn-junction’s energy levels evidences the substantial potential of the hybrid approach for enhancing device functionality.Deutsche Forschungsgemeinschafthttps://doi.org/10.13039/501100001659Peer Reviewe
Dielectric relaxations of nanocomposites composed of HEUR polymers and magnetite nanoparticles
We investigate the dynamics of nanocomposites composed of hydrophobically modified ethoxylated urethanes (HEUR) and magnetite nanoparticles (MNPs) as dry films. Weemployed dielectric relaxation spectroscopy (DRS) in combination with differential scanning calorimetry (DSC) and thermally stimulated depolarization currents (TSDC).The three techniques reveal a strong heterogeneity of the matrix of the nanocomposites, consisting of (i) a crystalline poly(ethyleneoxide) PEO bulk phase, (ii) an amorphous PEO portion, and (iii) small PEO crystallites which experience different constraints than the PEO bulk phase. TSDC and DRS reveal a very high direct current (DC)-conductivity of the pure matrix, which increases with MNPs concentration. The increase of the DCconductivity is not related to an increase of the segmental mobility, but most likely to the change of the morphology of the hydrophobic domains of the polymer matrix, due to the formation of large MNPs clusters. Indeed, the MNPs neither influence the segmental dynamics of the polymer nor the phase behavior of the polymer matrix. The addition of MNPs slightly increases the activation energy related to the γ-relaxation of the polymer. This effect might be related to the changes in nano-morphology as demonstrated by the slight increase of the degree of crystallinity. The analysis of the DRS data with the electrical modulus M’’(ω) and the derivative ε’’der formalism allow us to identify a low-frequency process in addition to the conductivity relaxation. This low-frequency dispersion is also revealed by TSDC. It is most likely related to the Maxwell-Wagner- Sillars relaxation, which typically occurs in systems which feature phase separation. The detailed investigation of the dielectric properties of these novel nanocomposites with increasing MNPs concentration will be useful for their practical application, for example as absorbers of electromagnetic waves
The ground state of Sr3Ru2O7 revisited; Fermi liquid close to a ferromagnetic instability
We show that single-crystalline Sr3Ru2O7 grown by a floating-zone technique
is an isotropic paramagnet and a quasi-two dimensional metal as spin-triplet
superconducting Sr2RuO4 is. The ground state is Fermi liquid with very low
residual resistivity (3 micro ohm cm for in-plane currents) and a nearly
ferromagnetic metal with the largest Wilson ratio Rw>10 among paramagnets so
far. This contrasts with the ferromagnetic order at Tc=104 K reported on single
crystals grown by a flux method [Cao et al., Phys. Rev. B 55, R672 (1997)]. We
have also found a dramatic changeover from paramagnetism to ferromagnetism
under applied pressure. This suggests the existence of a substantial
ferromagnetic instability on the verge of a quantum phase transition in the
Fermi liquid state.Comment: 5 pages, 4 figures, to be published in Phys. Rev. B : Rapid co
From nodal liquid to nodal Mottness in a frustrated Hubbard model
We investigate the physics of frustrated 3-leg Hubbard ladders in the band
limit, when hopping across the ladder's rungs (t) is of the same
order as hopping along them (t) much greater than the onsite Coulomb repulsion
(U). We show that this model exhibits a striking electron-hole asymmetry close
to half-filling: the hole-doped system at low temperatures develops a
Resonating Valence Bond (RVB)-like d-wave gap (pseudogap close to (,0))
coinciding with gapless nodal excitations (nodal liquid); in contrast, the
electron-doped system is seen to develop a Mott gap at the nodes, whilst
retaining a metallic character of its majority Fermi surface. At lower
temperatures in the electron-doped case, d-wave superconducting correlations --
here, coexisting with gapped nodal excitations -- are already seen to arise.
Upon further doping the hole-doped case, the RVB-like state yields to d-wave
superconductivity. Such physics is reminiscent of that exhibited by the high
temperature cuprate superconductors--notably electron-hole asymmetry as noted
by Angle Resolved PhotoEmission Spectroscopy (ARPES) and the resistivity
exponents observed. This toy model also reinforces the importance of a more
thorough experimental investigation of the known 3-leg ladder cuprate systems,
and may have some bearing on low dimensional organic superconductors.Comment: 26 pages, 16 figure
Metamagnetism and critical fluctuations in high quality single crystals of the bilayer ruthenate Sr3Ru2O7
We report the results of low temperature transport, specific heat and
magnetisation measurements on high quality single crystals of the bilayer
perovskite Sr3Ru2O7, which is a close relative of the unconventional
superconductor Sr2RuO4. Metamagnetism is observed, and transport and
thermodynamic evidence for associated critical fluctuations is presented. These
relatively unusual fluctuations might be pictured as variations in the Fermi
surface topography itself. No equivalent behaviour has been observed in the
metallic state of Sr2RuO4.Comment: 4 pages, 4 figures, Revtex 3.
Infrared optical properties of Pr2CuO4
The ab-plane reflectance of a Pr2CuO4 single crystal has been measured over a
wide frequency range at a variety of temperatures, and the optical properties
determined from a Kramers-Kronig analysis. Above ~ 250 K, the low frequency
conductivity increases quickly with temperature; the resistivity follows the
form e^(E_a/k_BT), where E_a ~ 0.17 eV is much less than the inferred optical
gap of ~ 1.2 eV. Transport measurements show that at low temperature the
resistivity deviates from activated behavior and follows the form
e^[(T_0/T)^1/4], indicating that the dc transport in this material is due to
variable-range hopping between localized states in the gap. The four
infrared-active Eu modes dominate the infrared optical properties. Below ~ 200
K, a striking new feature appears near the low-frequency Eu mode, and there is
additional new fine structure at high frequency. A normal coordinate analysis
has been performed and the detailed nature of the zone-center vibrations
determined. Only the low-frequency Eu mode has a significant Pr-Cu interaction.
Several possible mechanisms related to the antiferromagnetism in this material
are proposed to explain the sudden appearance of this and other new spectral
features at low temperature.Comment: 11 pages, 7 embedded EPS figures, REVTeX
Critical adsorption near edges
Symmetry breaking surface fields give rise to nontrivial and long-ranged
order parameter profiles for critical systems such as fluids, alloys or magnets
confined to wedges. We discuss the properties of the corresponding universal
scaling functions of the order parameter profile and the two-point correlation
function and determine the critical exponents eta_parallel and
eta_perpendicular for the so-called normal transition.Comment: 22 pages, 5 figures, accepted for publication in PR
- …