261 research outputs found

    Phase control of La2CuO4 in thin-film synthesis

    Full text link
    The lanthanum copper oxide, La2CuO4, which is an end member of the prototype high-Tc superconductors (La,Sr)2CuO4 and (La,Ba)2CuO4, crystallizes in the "K2NiF4" structure in high-temperature bulk synthesis. The crystal chemistry, however, predicts that La2CuO4 is at the borderline of the K2NiF4 stability and that it can crystallize in the Nd2CuO4 structure at low synthesis temperatures. In this article we demonstrate that low-temperature thin-film synthesis actually crystallizes La2CuO4 in the Nd2CuO4 structure. We also show that the phase control of "K2NiF4"-type La2CuO4 versus "Nd2CuO4"-type La2CuO4 can be achieved by varying the synthesis temperature and using different substrates.Comment: 4 pages, 5 figures, submitted to PRB, revte

    Electronic properties of hybrid organic/inorganic semiconductor pn-junctions

    Get PDF
    Hybrid inorganic/organic semiconductor heterojunctions are candidates to expand the scope of purely organic or inorganic junctions in electronic and optoelectronic devices. Comprehensive understanding of bulk and interface doping on the junction’s electronic properties is therefore desirable. In this work, we elucidate the energy level alignment and its mechanisms at a prototypical hybrid pn-junction comprising ZnO (n-type) and p-doped N,N′-di(1-naphthyl)-N,N′-diphenyl-(1,1′-biphenyl)-4,4′-diamine (α-NPD) as semiconductors, using photoelectron spectroscopy. The level alignment can be quantitatively described by the interplay of contact-induced band and energy level bending in the inorganic and organic component away from the interface, and an interface dipole due to the push-back effect. By adjusting the dopant concentration in α-NPD, the position of the frontier energy levels of ZnO can be varied by over 0.5 eV and that of α-NPD by over 1 eV. The tunability of this pn-junction’s energy levels evidences the substantial potential of the hybrid approach for enhancing device functionality.Deutsche Forschungsgemeinschafthttps://doi.org/10.13039/501100001659Peer Reviewe

    Dielectric relaxations of nanocomposites composed of HEUR polymers and magnetite nanoparticles

    Get PDF
    We investigate the dynamics of nanocomposites composed of hydrophobically modified ethoxylated urethanes (HEUR) and magnetite nanoparticles (MNPs) as dry films. Weemployed dielectric relaxation spectroscopy (DRS) in combination with differential scanning calorimetry (DSC) and thermally stimulated depolarization currents (TSDC).The three techniques reveal a strong heterogeneity of the matrix of the nanocomposites, consisting of (i) a crystalline poly(ethyleneoxide) PEO bulk phase, (ii) an amorphous PEO portion, and (iii) small PEO crystallites which experience different constraints than the PEO bulk phase. TSDC and DRS reveal a very high direct current (DC)-conductivity of the pure matrix, which increases with MNPs concentration. The increase of the DCconductivity is not related to an increase of the segmental mobility, but most likely to the change of the morphology of the hydrophobic domains of the polymer matrix, due to the formation of large MNPs clusters. Indeed, the MNPs neither influence the segmental dynamics of the polymer nor the phase behavior of the polymer matrix. The addition of MNPs slightly increases the activation energy related to the γ-relaxation of the polymer. This effect might be related to the changes in nano-morphology as demonstrated by the slight increase of the degree of crystallinity. The analysis of the DRS data with the electrical modulus M’’(ω) and the derivative ε’’der formalism allow us to identify a low-frequency process in addition to the conductivity relaxation. This low-frequency dispersion is also revealed by TSDC. It is most likely related to the Maxwell-Wagner- Sillars relaxation, which typically occurs in systems which feature phase separation. The detailed investigation of the dielectric properties of these novel nanocomposites with increasing MNPs concentration will be useful for their practical application, for example as absorbers of electromagnetic waves

    The ground state of Sr3Ru2O7 revisited; Fermi liquid close to a ferromagnetic instability

    Full text link
    We show that single-crystalline Sr3Ru2O7 grown by a floating-zone technique is an isotropic paramagnet and a quasi-two dimensional metal as spin-triplet superconducting Sr2RuO4 is. The ground state is Fermi liquid with very low residual resistivity (3 micro ohm cm for in-plane currents) and a nearly ferromagnetic metal with the largest Wilson ratio Rw>10 among paramagnets so far. This contrasts with the ferromagnetic order at Tc=104 K reported on single crystals grown by a flux method [Cao et al., Phys. Rev. B 55, R672 (1997)]. We have also found a dramatic changeover from paramagnetism to ferromagnetism under applied pressure. This suggests the existence of a substantial ferromagnetic instability on the verge of a quantum phase transition in the Fermi liquid state.Comment: 5 pages, 4 figures, to be published in Phys. Rev. B : Rapid co

    From nodal liquid to nodal Mottness in a frustrated Hubbard model

    Full text link
    We investigate the physics of frustrated 3-leg Hubbard ladders in the band limit, when hopping across the ladder's rungs (t⊥_{\perp}) is of the same order as hopping along them (t) much greater than the onsite Coulomb repulsion (U). We show that this model exhibits a striking electron-hole asymmetry close to half-filling: the hole-doped system at low temperatures develops a Resonating Valence Bond (RVB)-like d-wave gap (pseudogap close to (π\pi,0)) coinciding with gapless nodal excitations (nodal liquid); in contrast, the electron-doped system is seen to develop a Mott gap at the nodes, whilst retaining a metallic character of its majority Fermi surface. At lower temperatures in the electron-doped case, d-wave superconducting correlations -- here, coexisting with gapped nodal excitations -- are already seen to arise. Upon further doping the hole-doped case, the RVB-like state yields to d-wave superconductivity. Such physics is reminiscent of that exhibited by the high temperature cuprate superconductors--notably electron-hole asymmetry as noted by Angle Resolved PhotoEmission Spectroscopy (ARPES) and the resistivity exponents observed. This toy model also reinforces the importance of a more thorough experimental investigation of the known 3-leg ladder cuprate systems, and may have some bearing on low dimensional organic superconductors.Comment: 26 pages, 16 figure

    Metamagnetism and critical fluctuations in high quality single crystals of the bilayer ruthenate Sr3Ru2O7

    Full text link
    We report the results of low temperature transport, specific heat and magnetisation measurements on high quality single crystals of the bilayer perovskite Sr3Ru2O7, which is a close relative of the unconventional superconductor Sr2RuO4. Metamagnetism is observed, and transport and thermodynamic evidence for associated critical fluctuations is presented. These relatively unusual fluctuations might be pictured as variations in the Fermi surface topography itself. No equivalent behaviour has been observed in the metallic state of Sr2RuO4.Comment: 4 pages, 4 figures, Revtex 3.

    Infrared optical properties of Pr2CuO4

    Full text link
    The ab-plane reflectance of a Pr2CuO4 single crystal has been measured over a wide frequency range at a variety of temperatures, and the optical properties determined from a Kramers-Kronig analysis. Above ~ 250 K, the low frequency conductivity increases quickly with temperature; the resistivity follows the form e^(E_a/k_BT), where E_a ~ 0.17 eV is much less than the inferred optical gap of ~ 1.2 eV. Transport measurements show that at low temperature the resistivity deviates from activated behavior and follows the form e^[(T_0/T)^1/4], indicating that the dc transport in this material is due to variable-range hopping between localized states in the gap. The four infrared-active Eu modes dominate the infrared optical properties. Below ~ 200 K, a striking new feature appears near the low-frequency Eu mode, and there is additional new fine structure at high frequency. A normal coordinate analysis has been performed and the detailed nature of the zone-center vibrations determined. Only the low-frequency Eu mode has a significant Pr-Cu interaction. Several possible mechanisms related to the antiferromagnetism in this material are proposed to explain the sudden appearance of this and other new spectral features at low temperature.Comment: 11 pages, 7 embedded EPS figures, REVTeX

    Critical adsorption near edges

    Get PDF
    Symmetry breaking surface fields give rise to nontrivial and long-ranged order parameter profiles for critical systems such as fluids, alloys or magnets confined to wedges. We discuss the properties of the corresponding universal scaling functions of the order parameter profile and the two-point correlation function and determine the critical exponents eta_parallel and eta_perpendicular for the so-called normal transition.Comment: 22 pages, 5 figures, accepted for publication in PR
    • …
    corecore