96 research outputs found

    Connecting Peptide Physicochemical and Antimicrobial Properties by a Rational Prediction Model

    Get PDF
    The increasing rate in antibiotic-resistant bacterial strains has become an imperative health issue. Thus, pharmaceutical industries have focussed their efforts to find new potent, non-toxic compounds to treat bacterial infections. Antimicrobial peptides (AMPs) are promising candidates in the fight against antibiotic-resistant pathogens due to their low toxicity, broad range of activity and unspecific mechanism of action. In this context, bioinformatics' strategies can inspire the design of new peptide leads with enhanced activity. Here, we describe an artificial neural network approach, based on the AMP's physicochemical characteristics, that is able not only to identify active peptides but also to assess its antimicrobial potency. The physicochemical properties considered are directly derived from the peptide sequence and comprise a complete set of parameters that accurately describe AMPs. Most interesting, the results obtained dovetail with a model for the AMP's mechanism of action that takes into account new concepts such as peptide aggregation. Moreover, this classification system displays high accuracy and is well correlated with the experimentally reported data. All together, these results suggest that the physicochemical properties of AMPs determine its action. In addition, we conclude that sequence derived parameters are enough to characterize antimicrobial peptides

    Sap Transporter Mediated Import and Subsequent Degradation of Antimicrobial Peptides in Haemophilus

    Get PDF
    Antimicrobial peptides (AMPs) contribute to host innate immune defense and are a critical component to control bacterial infection. Nontypeable Haemophilus influenzae (NTHI) is a commensal inhabitant of the human nasopharyngeal mucosa, yet is commonly associated with opportunistic infections of the upper and lower respiratory tracts. An important aspect of NTHI virulence is the ability to avert bactericidal effects of host-derived antimicrobial peptides (AMPs). The Sap (sensitivity to antimicrobial peptides) ABC transporter equips NTHI to resist AMPs, although the mechanism of this resistance has remained undefined. We previously determined that the periplasmic binding protein SapA bound AMPs and was required for NTHI virulence in vivo. We now demonstrate, by antibody-mediated neutralization of AMP in vivo, that SapA functions to directly counter AMP lethality during NTHI infection. We hypothesized that SapA would deliver AMPs to the Sap inner membrane complex for transport into the bacterial cytoplasm. We observed that AMPs localize to the bacterial cytoplasm of the parental NTHI strain and were susceptible to cytoplasmic peptidase activity. In striking contrast, AMPs accumulated in the periplasm of bacteria lacking a functional Sap permease complex. These data support a mechanism of Sap mediated import of AMPs, a novel strategy to reduce periplasmic and inner membrane accumulation of these host defense peptides

    Proteome-wide analysis reveals an age-associated cellular phenotype of <em>in situ</em> aged human fibroblasts.

    Full text link
    We analyzed anex vivo model of in situ aged human dermal fibroblasts, obtained from 15 adult healthy donors from three different age groups using an unbiased quantitative proteome-wide approach applying label-free mass spectrometry. Thereby, we identified 2409 proteins, including 43 proteins with an age-associated abundance change. Most of the differentially abundant proteins have not been described in the context of fibroblasts&#39; aging before, but the deduced biological processes confirmed known hallmarks of aging and led to a consistent picture of eight biological categories involved in fibroblast aging, namely proteostasis, cell cycle and proliferation, development and differentiation, cell death, cell organization and cytoskeleton, response to stress, cell communication and signal transduction, as well as RNA metabolism and translation. The exhaustive analysis of protein and mRNA data revealed that 77 % of the age-associated proteins were not linked to expression changes of the corresponding transcripts. This is in line with an associated miRNA study and led us to the conclusion that most of the age-associated alterations detected at the proteome level are likely caused post-transcriptionally rather than by differential gene expression. In summary, our findings led to the characterization of novel proteins potentially associated with fibroblast aging and revealed that primary cultures of in situ aged fibroblasts are characterized by moderate age-related proteomic changes comprising the multifactorial process of aging
    corecore