2,373 research outputs found

    A remark on asymptotic completeness for the critical nonlinear Klein-Gordon equation

    Full text link
    We give a short proof of asymptotic completeness and global existence for the cubic Nonlinear Klein-Gordon equation in one dimension. Our approach to dealing with the long range behavior of the asymptotic solution is by reducing it, in hyperbolic coordinates to the study of an ODE. Similar arguments extend to higher dimensions and other long range type nonlinear problems.Comment: To appear in Lett. Math. Phy

    Simple Non Linear Klein-Gordon Equations in 2 space dimensions, with long range scattering

    Full text link
    We establish that solutions, to the most simple NLKG equations in 2 space dimensions with mass resonance, exhibits long range scattering phenomena. Modified wave operators and solutions are constructed for these equations. We also show that the modified wave operators can be chosen such that they linearize the non-linear representation of the Poincar\'e group defined by the NLKG.Comment: 19 pages, LaTeX, To appear in Lett. Math. Phy

    Chains of Quasi-Classical Informations for Bipartite Correlations and the Role of Twin Observables

    Full text link
    Having the quantum correlations in a general bipartite state in mind, the information accessible by simultaneous measurement on both subsystems is shown never to exceed the information accessible by measurement on one subsystem, which, in turn is proved not to exceed the von Neumann mutual information. A particular pair of (opposite- subsystem) observables are shown to be responsible both for the amount of quasi-classical correlations and for that of the purely quantum entanglement in the pure-state case: the former via simultaneous subsystem measurements, and the latter through the entropy of coherence or of incompatibility, which is defined for the general case. The observables at issue are so-called twin observables. A general definition of the latter is given in terms of their detailed properties.Comment: 7 pages, Latex2e, selected for the December 2002 issue of the Virtual Journal of Quantum Informatio

    Steady state entanglement in open and noisy quantum systems at high temperature

    Full text link
    We show that quantum mechanical entanglement can prevail even in noisy open quantum systems at high temperature and far from thermodynamical equilibrium, despite the deteriorating effect of decoherence. The system consists of a number N of interacting quantum particles, and it can interact and exchange particles with some environment. The effect of decoherence is counteracted by a simple mechanism, where system particles are randomly reset to some standard initial state, e.g. by replacing them with particles from the environment. We present a master equation that describes this process, which we can solve analytically for small N. If we vary the interaction strength and the reset against decoherence rate, we find a threshold below which the equilibrium state is classically correlated, and above which there is a parameter region with genuine entanglement.Comment: 5 pages, 3 figure

    Pure Stationary States of Open Quantum Systems

    Full text link
    Using Liouville space and superoperator formalism we consider pure stationary states of open and dissipative quantum systems. We discuss stationary states of open quantum systems, which coincide with stationary states of closed quantum systems. Open quantum systems with pure stationary states of linear oscillator are suggested. We consider stationary states for the Lindblad equation. We discuss bifurcations of pure stationary states for open quantum systems which are quantum analogs of classical dynamical bifurcations.Comment: 7p., REVTeX

    Correlations in optically-controlled quantum emitters

    Full text link
    We address the problem of optically controlling and quantifying the dissipative dynamics of quantum and classical correlations in a set-up of individual quantum emitters under external laser excitation. We show that both types of correlations, the former measured by the quantum discord, are present in the system's evolution even though the emitters may exhibit an early stage disentanglement. In the absence of external laser pumping,we demonstrate analytically, for a set of suitable initial states, that there is an entropy bound for which quantum discord and entanglement of the emitters are always greater than classical correlations, thus disproving an early conjecture that classical correlations are greater than quantum correlations. Furthermore, we show that quantum correlations can also be greater than classical correlations when the system is driven by a laser field. For scenarios where the emitters' quantum correlations are below their classical counterparts, an optimization of the evolution of the quantum correlations can be carried out by appropriately tailoring the amplitude of the laser field and the emitters' dipole-dipole interaction. We stress the importance of using the entanglement of formation, rather than the concurrence, as the entanglement measure, since the latter can grow beyond the total correlations and thus give incorrect results on the actual system's degree of entanglement.Comment: 11 pages, 10 figures, this version contains minor modifications; to appear in Phys. Rev.

    Nonequilibrium entropy production for open quantum systems

    Full text link
    We consider open quantum systems weakly coupled to a heat reservoir and driven by arbitrary time-dependent parameters. We derive exact microscopic expressions for the nonequilibrium entropy production and entropy production rate, valid arbitrarily far from equilibrium. By using the two-point energy measurement statistics for system and reservoir, we further obtain a quantum generalization of the integrated fluctuation theorem put forward by Seifert [PRL 95, 040602 (2005)].Comment: 4 pages, 1 figur

    Kinematic approach to the mixed state geometric phase in nonunitary evolution

    Full text link
    A kinematic approach to the geometric phase for mixed quantal states in nonunitary evolution is proposed. This phase is manifestly gauge invariant and can be experimentally tested in interferometry. It leads to well-known results when the evolution is unitary.Comment: Minor changes; journal reference adde

    Quantum decoherence in the theory of open systems

    Full text link
    In the framework of the Lindblad theory for open quantum systems, we determine the degree of quantum decoherence of a harmonic oscillator interacting with a thermal bath. It is found that the system manifests a quantum decoherence which is more and more significant in time. We calculate also the decoherence time scale and analyze the transition from quantum to classical behaviour of the considered system.Comment: 6 pages; talk at the 3rd International Workshop "Quantum Physics and Communication" (QPC 2005), Dubna, Russia, 200
    corecore