20,814 research outputs found
Relative periodic orbits in point vortex systems
We give a method to determine relative periodic orbits in point vortex
systems: it consists mainly into perform a symplectic reduction on a fixed
point submanifold in order to obtain a two-dimensional reduced phase space. The
method is applied to point vortices systems on a sphere and on the plane, but
works for other surfaces with isotropy (cylinder, ellipsoid, ...). The method
permits also to determine some relative equilibria and heteroclinic cycles
connecting these relative equilibria.Comment: 27 pages, 17 figure
Diffractive orbits in the length spectrum of a 2D microwave cavity with a small scatterer
In a 2D rectangular microwave cavity dressed with one point-like scatterer, a
semiclassical approach is used to analyze the spectrum in terms of periodic
orbits and diffractive orbits. We show, both numerically and experimentally,
how the latter can be accounted for in the so-called length spectrum which is
retrieved from 2-point correlations of a finite range frequency spectrum.
Beyond its fundamental interest, this first experimental evidence of the role
played by diffractive orbits in the spectrum of an actual cavity, can be the
first step towards a novel technique to detect and track small defects in wave
cavities.Comment: 14 pages, format IO
Large variation in the boundary-condition slippage for a rarefied gas flowing between two surfaces
We study the slippage of a gas along mobile rigid walls in the sphere-plane
confined geometry and find that it varies considerably with pressure. The
classical no-slip boundary condition valid at ambient pressure changes
continuously to an almost perfect slip condition in a primary vacuum. Our study
emphasizes the key role played by the mean free-path of the gas molecules on
the interaction between a confined fluid and solid surfaces and further
demonstrates that the macroscopic hydrodynamics approach can be used with
confidence even in a primary vacuum environment where it is intuitively
expected to fail
An Adaptive Total Variation Algorithm for Computing the Balanced Cut of a Graph
We propose an adaptive version of the total variation algorithm proposed in
[3] for computing the balanced cut of a graph. The algorithm from [3] used a
sequence of inner total variation minimizations to guarantee descent of the
balanced cut energy as well as convergence of the algorithm. In practice the
total variation minimization step is never solved exactly. Instead, an accuracy
parameter is specified and the total variation minimization terminates once
this level of accuracy is reached. The choice of this parameter can vastly
impact both the computational time of the overall algorithm as well as the
accuracy of the result. Moreover, since the total variation minimization step
is not solved exactly, the algorithm is not guarantied to be monotonic. In the
present work we introduce a new adaptive stopping condition for the total
variation minimization that guarantees monotonicity. This results in an
algorithm that is actually monotonic in practice and is also significantly
faster than previous, non-adaptive algorithms
Multiclass Total Variation Clustering
Ideas from the image processing literature have recently motivated a new set
of clustering algorithms that rely on the concept of total variation. While
these algorithms perform well for bi-partitioning tasks, their recursive
extensions yield unimpressive results for multiclass clustering tasks. This
paper presents a general framework for multiclass total variation clustering
that does not rely on recursion. The results greatly outperform previous total
variation algorithms and compare well with state-of-the-art NMF approaches
Casimir force measurements in Au-Au and Au-Si cavities at low temperature
We report on measurements of the Casimir force in a sphere-plane geometry
using a cryogenic force microscope to move the force probe in situ over
different materials. We show how the electrostatic environment of the
interacting surfaces plays an important role in weak force measurements and can
overcome the Casimir force at large distance. After minimizing these parasitic
forces, we measure the Casimir force between a gold-coated sphere and either a
gold-coated or a heavily doped silicon surface in the 100-400 nm distance
range. We compare the experimental data with theoretical predictions and
discuss the consequence of a systematic error in the scanner calibration on the
agreement between experiment and theory. The relative force over the two
surfaces compares favorably with theory at short distance, showing that this
Casimir force experiment is sensitive to the dielectric properties of the
interacting surfaces.Comment: accepted for publication in Physical Review
Direct Detection is testing Freeze-in
Dark Matter (DM) may belong to a hidden sector that is only feebly
interacting with the Standard Model (SM) and may have never been in thermal
equilibrium in the Early Universe. In this case, the observed abundance of dark
matter particles could have built up through a process known as Freeze-in. We
show that, for the first time, direct detection experiments are testing this DM
production mechanism. This applies to scenarios where the SM and hidden sectors
communicate through a light mediator particle of mass less than a few MeV.
Through the exchange of such light mediator, the very same FIMP candidates can
have self-interactions that are in the range required to address the small
scale structure issues of collisionless cold dark matter.Comment: 7 pages, 4 figures. References added. Discussion of further
constraints on parameters. Figures updated. Conclusions unchanged. Matches
published versio
Prediction of microgeometrical influences on micropitting fatigue damage on 32CrMoV13 steel
Dr Fabre's sabbatical period at the Cardiff School of Engineering allowed the research to be conducted. Thanks are due to the M2P department of Arts et Métiers ParisTech, to Arts et Métiers ParisTech—Aix en Provence, and to the MécaSurf laboratory for supporting the visit financially, and to Cardiff University for provision of research facilities. Dr Sharif's contribution to the research was supported financially by UK Engineering & Physical Sciences Research Council (EPSRC) with Grant no. EP/G06024X/1.Micropitting is a form of surface fatigue damage that occurs in the gear teeth. It is due to the effect of variation in the mechanical loading in the contact zone between the two teeth, induced especially by flank roughness. In this study, generic roughness profiles were built with geometrical parameters to simulate the contact between two rough surfaces. Using elastohydrodynamic lubrication code and Crossland’s fatigue criteria, the influence on fatigue lifetime was analysed for changes in each parameter. The relevant parameters were determined that influence(i) the conventional pitting,(ii) the extent to which the von Mises equivalent stress exceeds the material yield stress in the zone where micropitting occurs, and(iii) the fatigue lifetime for steel teeth. With nitriding benefits, the same trends were shown with weaker effects
- …