2,379 research outputs found
Instrumentation of a high-sensitivity microwave vector detection system for low-temperature applications
We present the design and the circuit details of a high-sensitivity microwave
vector detection system, which is aiming for studying the low-dimensional
electron system embedded in the slots of a coplanar waveguide at low
temperatures. The coplanar waveguide sample is placed inside a phase-locked
loop; the phase change of the sample may cause a corresponding change in the
operation frequency, which can be measured precisely. We also employ a
double-pulse modulation on the microwave signals, which comprises a fast pulse
modulation for gated averaging and a slow pulse modulation for lock-in
detection. In measurements on real samples at low temperatures, this system
provides much better resolutions in both amplitude and phase than most of the
conventional vector analyzers at power levels below -65 dBm.Comment: 7 pages, 11 figures, 1 table, lette
Non-Markovian entanglement dynamics of quantum continuous variable systems in thermal environments
We study two continuous variable systems (or two harmonic oscillators) and
investigate their entanglement evolution under the influence of non-Markovian
thermal environments. The continuous variable systems could be two modes of
electromagnetic fields or two nanomechanical oscillators in the quantum domain.
We use quantum open system method to derive the non-Markovian master equations
of the reduced density matrix for two different but related models of the
continuous variable systems. The two models both consist of two interacting
harmonic oscillators. In model A, each of the two oscillators is coupled to its
own independent thermal reservoir, while in model B the two oscillators are
coupled to a common reservoir. To quantify the degrees of entanglement for the
bipartite continuous variable systems in Gaussian states, logarithmic
negativity is used. We find that the dynamics of the quantum entanglement is
sensitive to the initial states, the oscillator-oscillator interaction, the
oscillator-environment interaction and the coupling to a common bath or to
different, independent baths.Comment: 10 two-column pages, 8 figures, to appear in Phys. Rev.
Mapping Monte Carlo to Langevin dynamics: A Fokker-Planck approach
We propose a general method of using the Fokker-Planck equation (FPE) to link
the Monte-Carlo (MC) and the Langevin micromagnetic schemes. We derive the
drift and disusion FPE terms corresponding to the MC method and show that it is
analytically equivalent to the stochastic Landau-Lifshitz-Gilbert (LLG)
equation of Langevin-based micromagnetics. Subsequent results such as the time
quantification factor for the Metropolis MC method can be rigorously derived
from this mapping equivalence. The validity of the mapping is shown by the
close numerical convergence between the MC method and the LLG equation for the
case of a single magnetic particle as well as interacting arrays of particles.
We also found that our Metropolis MC is accurate for a large range of damping
factors , unlike previous time-quantified MC methods which break down
at low , where precessional motion dominates.Comment: 4 pages, 4 figures. Accepted for publication in Phys. Rev. Let
Structural Change in (Economic) Time Series
Methods for detecting structural changes, or change points, in time series
data are widely used in many fields of science and engineering. This chapter
sketches some basic methods for the analysis of structural changes in time
series data. The exposition is confined to retrospective methods for univariate
time series. Several recent methods for dating structural changes are compared
using a time series of oil prices spanning more than 60 years. The methods
broadly agree for the first part of the series up to the mid-1980s, for which
changes are associated with major historical events, but provide somewhat
different solutions thereafter, reflecting a gradual increase in oil prices
that is not well described by a step function. As a further illustration, 1990s
data on the volatility of the Hang Seng stock market index are reanalyzed.Comment: 12 pages, 6 figure
Angular position of nodes in the superconducting gap of YBCO
The thermal conductivity of a YBCO single crystal has been studied as a
function of the relative orientation of the crystal axes and a magnetic field
rotating in the Cu-O planes. Measurements were carried out at several
temperatures below T_c and at a fixed field of 30 kOe. A four-fold symmetry
characteristic of a superconducting gap with nodes at odd multiples of 45
degrees in k-space was resolved. Experiments were performed to exclude a
possible macroscopic origin for such a four-fold symmetry such as sample shape
or anisotropic pinning. Our results impose an upper limit of 10% on the weight
of the s-wave component of the essentially d-wave superconducting order
parameter of YBCO.Comment: 10 pages, 4 figure
Submillimeter emission from the hot molecular jet HH 211
We observed the HH 211 jet in the submillimeter continuum and the CO(3-2) and
SiO(8-7) transitions with the Submillimeter Array. The continuum source
detected at the center of the outflow shows an elongated morphology,
perpendicular to the direction of the outflow axis. The high-velocity emission
of both molecules shows a knotty and highly collimated structure. The SiO(8-7)
emission at the base of the outflow, close to the driving source, spans a wide
range of velocities, from -20 up to 40 km s^{-1}. This suggests that a
wide-angle wind may be the driving mechanism of the HH 211 outflow. For
distances greater than 5" (1500 AU) from the driving source, emission from both
transitions follows a Hubble-law behavior, with SiO(8-7) reaching higher
velocities than CO(3-2), and being located upstream of the CO(3-2) knots. This
indicates that the SiO(8-7) emission is likely tracing entrained gas very close
to the primary jet, while the CO(3-2) is tracing less dense entrained gas. From
the SiO(5-4) data of Hirano et al. we find that the SiO(8-7)/SiO(5-4)
brightness temperature ratio along the jet decreases for knots far from the
driving source. This is consistent with the density decreasing along the jet,
from (3-10)x10^6 cm^{-3} at 500 AU to (0.8-4)x10^6 cm^{-3} at 5000 AU from the
driving source.Comment: 3 pages, 3 figures. Accepted by Astrophysical Journal Letter
- …