55,709 research outputs found
Evidence of spin liquid with hard-core bosons in a square lattice
We show that laser assisted hopping of hard core bosons in a square optical
lattice can be described by an antiferromagnetic - XY model with
tunable ratio of . We numerically investigate the phase diagram of
the - XY model using both the tensor network algorithm for
infinite systems and the exact diagonalization for small clusters and find
strong evidence that in the intermediate region around ,
there is a spin liquid phase with vanishing magnetization and valence bond
orders, which interconnects the Neel state on the side and the
stripe antiferromagnetic phase on the side. This finding
opens up the possibility of studying the exotic spin liquid phase in a
realistic experimental system using ultracold atoms in an optical lattice.Comment: 5 pages, 5 figure
The motion of a deformable drop in a second-order fluid
The cross-stream migration of a deformable drop in a unidirectional shear flow of a second-order fluid is considered. Expressions for the particle velocity due to the separate effects of deformation and viscoelastic rheology are obtained. The direction and magnitude of migration are calculated for the particular cases of Poiseuille flow and simple shear flow and compared with experimental data
Kinetic modeling of Secondary Organic Aerosol formation: effects of particle- and gas-phase reactions of semivolatile products
The distinguishing mechanism of formation of secondary organic aerosol (SOA) is the partitioning of semivolatile hydrocarbon oxidation products between the gas and aerosol phases. While SOA formation is typically described in terms of partitioning only, the rate of formation and ultimate yield of SOA can also depend on the kinetics of both gas- and aerosol-phase processes. We present a general equilibrium/kinetic model of SOA formation that provides a framework for evaluating the extent to which the controlling mechanisms of SOA formation can be inferred from laboratory chamber data. With this model we examine the effect on SOA formation of gas-phase oxidation of first-generation products to either more or less volatile species, of particle-phase reaction (both first- and second-order kinetics), of the rate of parent hydrocarbon oxidation, and of the extent of reaction of the parent hydrocarbon. The effect of pre-existing organic aerosol mass on SOA yield, an issue of direct relevance to the translation of laboratory data to atmospheric applications, is examined. The importance of direct chemical measurements of gas- and particle-phase species is underscored in identifying SOA formation mechanisms
Supersolid and charge density-wave states from anisotropic interaction in an optical lattice
We show anisotropy of the dipole interaction between magnetic atoms or polar
molecules can stabilize new quantum phases in an optical lattice. Using a well
controlled numerical method based on the tensor network algorithm, we calculate
phase diagram of the resultant effective Hamiltonian in a two-dimensional
square lattice - an anisotropic Hubbard model of hard-core bosons with
attractive interaction in one direction and repulsive interaction in the other
direction. Besides the conventional superfluid and the Mott insulator states,
we find the striped and the checkerboard charge density wave states and the
supersolid phase that interconnect the superfluid and the striped solid states.
The transition to the supersolid phase has a mechanism different from the case
of the soft-core Bose Hubbard model.Comment: 5 pages, 5 figures
Profitable Scheduling on Multiple Speed-Scalable Processors
We present a new online algorithm for profit-oriented scheduling on multiple
speed-scalable processors. Moreover, we provide a tight analysis of the
algorithm's competitiveness. Our results generalize and improve upon work by
\textcite{Chan:2010}, which considers a single speed-scalable processor. Using
significantly different techniques, we can not only extend their model to
multiprocessors but also prove an enhanced and tight competitive ratio for our
algorithm.
In our scheduling problem, jobs arrive over time and are preemptable. They
have different workloads, values, and deadlines. The scheduler may decide not
to finish a job but instead to suffer a loss equaling the job's value. However,
to process a job's workload until its deadline the scheduler must invest a
certain amount of energy. The cost of a schedule is the sum of lost values and
invested energy. In order to finish a job the scheduler has to determine which
processors to use and set their speeds accordingly. A processor's energy
consumption is power \Power{s} integrated over time, where
\Power{s}=s^{\alpha} is the power consumption when running at speed .
Since we consider the online variant of the problem, the scheduler has no
knowledge about future jobs. This problem was introduced by
\textcite{Chan:2010} for the case of a single processor. They presented an
online algorithm which is -competitive. We provide an
online algorithm for the case of multiple processors with an improved
competitive ratio of .Comment: Extended abstract submitted to STACS 201
Effects of f(R) Model on the Dynamical Instability of Expansionfree Gravitational Collapse
Dark energy models based on f(R) theory have been extensively studied in
literature to realize the late time acceleration. In this paper, we have chosen
a viable f(R) model and discussed its effects on the dynamical instability of
expansionfree fluid evolution generating a central vacuum cavity. For this
purpose, contracted Bianchi identities are obtained for both the usual matter
as well as dark source. The term dark source is named to the higher order
curvature corrections arising from f(R) gravity. The perturbation scheme is
applied and different terms belonging to Newtonian and post Newtonian regimes
are identified. It is found that instability range of expansionfree fluid on
external boundary as well as on internal vacuum cavity is independent of
adiabatic index but depends upon the density profile, pressure
anisotropy and f(R) model.Comment: 26 pages, no figure. arXiv admin note: text overlap with
arXiv:1108.266
Archetypal analysis of galaxy spectra
Archetypal analysis represents each individual member of a set of data
vectors as a mixture (a constrained linear combination) of the pure types or
archetypes of the data set. The archetypes are themselves required to be
mixtures of the data vectors. Archetypal analysis may be particularly useful in
analysing data sets comprising galaxy spectra, since each spectrum is,
presumably, a superposition of the emission from the various stellar
populations, nebular emissions and nuclear activity making up that galaxy, and
each of these emission sources corresponds to a potential archetype of the
entire data set. We demonstrate archetypal analysis using sets of composite
synthetic galaxy spectra, showing that the method promises to be an effective
and efficient way to classify spectra. We show that archetypal analysis is
robust in the presence of various types of noise.Comment: 6 pages, 5 figures, 1 style-file. Accepted for publication by MNRA
Activation barrier scaling and crossover for noise-induced switching in a micromechanical parametric oscillator
We explore fluctuation-induced switching in a parametrically-driven
micromechanical torsional oscillator. The oscillator possesses one, two or
three stable attractors depending on the modulation frequency. Noise induces
transitions between the coexisting attractors. Near the bifurcation points, the
activation barriers are found to have a power law dependence on frequency
detuning with critical exponents that are in agreement with predicted universal
scaling relationships. At large detuning, we observe a crossover to a different
power law dependence with an exponent that is device specific.Comment: 5 pages, 5 figure
Piezoelectric copolymer hydrophones for ultrasonic field characterization
Hydrophones to be used in the characterization of medical ultrasonic transducers have
been fabricated using a new polyvinylidene fluoride/trifluoroethylene (VF2/VF3)
copolymer. The copolymer has an advantage over VF2 in that it does not require
prestretching before poling. Thin copolymer films can be cast from solution and then
poled using the corona discharge method. As there is a need for small‐diameter
hydrophones to provide good spatial resolution in measuring highly focused ultrasonic
beams, hydrophones with diameter as small as 0.1 mm have been made. Both
needle‐type and line hydrophones have been tested and their performance reported. In
the case of line hydrophones, the output signal is proportional to the line integral of the
acoustic pressure and a computer tomographic technique has been used to reconstruct the
beam profiles
- …