974 research outputs found
Universal Quantum Computation in a Neutral Atom Decoherence Free Subspace
In this paper, we propose a way to achieve protected universal computation in
a neutral atom quantum computer subject to collective dephasing. Our proposal
relies on the existence of a Decoherence Free Subspace (DFS), resulting from
symmetry properties of the errors. After briefly describing the physical system
and the error model considered, we show how to encode information into the DFS
and build a complete set of safe universal gates. Finally, we provide numerical
simulations for the fidelity of the different gates in the presence of
time-dependent phase errors and discuss their performance and practical
feasibility.Comment: 7 pages, 8 figure
Adiabatic Elimination in a Lambda System
This paper deals with different ways to extract the effective two-dimensional
lower level dynamics of a lambda system excited by off-resonant laser beams. We
present a commonly used procedure for elimination of the upper level, and we
show that it may lead to ambiguous results. To overcome this problem and better
understand the applicability conditions of this scheme, we review two rigorous
methods which allow us both to derive an unambiguous effective two-level
Hamiltonian of the system and to quantify the accuracy of the approximation
achieved: the first one relies on the exact solution of the Schrodinger
equation, while the second one resorts to the Green's function formalism and
the Feshbach projection operator technique.Comment: 14 pages, 3 figure
Error correction in ensemble registers for quantum repeaters and quantum computers
We propose to use a collective excitation blockade mechanism to identify
errors that occur due to disturbances of single atoms in ensemble quantum
registers where qubits are stored in the collective population of different
internal atomic states. A simple error correction procedure and a simple
decoherence-free encoding of ensemble qubits in the hyperfine states of alkali
atoms are presented.Comment: 4 pages, 2 figure
Zero kinetic energy-pulsed field ionization and resonance enhanced multiphoton ionization photoelectron spectroscopy: Ionization dynamics of Rydberg states in HBr
The results of rotationally resolved resonance enhanced multiphoton ionization photoelectron spectroscopy and zero kinetic energy‐pulsed field ionization studies on HBr via various rotational levels of the F^ 1Δ_2 and f^ 3Δ_2 Rydberg states are reported. These studies lead to an accurate determination of the lowest ionization threshold as 94 098.9±1 cm^(−1). Observed rotational and spin–orbit branching ratios are compared to the results of ab initio calculations. The differences between theory and experiment highlight the dominant role of rotational and spin–orbit interactions for the dynamic properties of the high‐n Rydberg states involved in the pulsed field ionization process
Spin excitations in the antiferromagnet NaNiO2
In NaNiO2, Ni3+ ions form a quasi two dimensional triangular lattice of S =
1=2 spins. The magnetic order observed below 20K has been described as an A
type antiferromagnet with ferro- magnetic layers weakly coupled
antiferromagnetically. We studied the magnetic excitations with the electron
spin resonance for frequencies 1-20 cm-1, in magnetic fields up to 14 T. The
bulk of the results are interpreted in terms of a phenomenological model
involving bi-axial anisotropy for the spins: a strong easy-plane term, and a
weaker anisotropy within the plane. The direction of the easy plane is
constrained by the collective Jahn-Teller distortion occurring in this material
at 480 K
Identifying genomic regions for fine-mapping using genome scan meta-analysis (GSMA) to identify the minimum regions of maximum significance (MRMS) across populations
In order to detect linkage of the simulated complex disease Kofendrerd Personality Disorder across studies from multiple populations, we performed a genome scan meta-analysis (GSMA). Using the 7-cM microsatellite map, nonparametric multipoint linkage analyses were performed separately on each of the four simulated populations independently to determine p-values. The genome of each population was divided into 20-cM bin regions, and each bin was rank-ordered based on the most significant linkage p-value for that population in that region. The bin ranks were then averaged across all four studies to determine the most significant 20-cM regions over all studies. Statistical significance of the averaged bin ranks was determined from a normal distribution of randomly assigned rank averages. To narrow the region of interest for fine-mapping, the meta-analysis was repeated two additional times, with each of the 20-cM bins offset by 7 cM and 13 cM, respectively, creating regions of overlap with the original method. The 6–7 cM shared regions, where the highest averaged 20-cM bins from each of the three offsets overlap, designated the minimum region of maximum significance (MRMS). Application of the GSMA-MRMS method revealed genome wide significance (p-values refer to the average rank assigned to the bin) at regions including or adjacent to all of the simulated disease loci: chromosome 1 (p < 0.0001 for 160–167 cM, including D1), chromosome 3 (p-value < 0.0000001 for 287–294 cM, including D2), chromosome 5 (p-value < 0.001 for 0–7 cM, including D3), and chromosome 9 (p-value < 0.05 for 7–14 cM, the region adjacent to D4). This GSMA analysis approach demonstrates the power of linkage meta-analysis to detect multiple genes simultaneously for a complex disorder. The MRMS method enhances this powerful tool to focus on more localized regions of linkage
Phonons in the multiferroic langasite BaNbFeSiO : evidences for symmetry breaking
The chiral langasite BaNbFeSiO is a multiferroic
compound. While its magnetic order below T=27 K is now well characterised,
its polar order is still controversial. We thus looked at the phonon spectrum
and its temperature dependence to unravel possible crystal symmetry breaking.
We combined optical measurements (both infrared and Raman spectroscopy) with ab
initio calculations and show that signatures of a polar state are clearly
present in the phonon spectrum even at room temperature. An additional symmetry
lowering occurs below 120~K as seen from emergence of softer phonon modes in
the THz range. These results confirm the multiferroic nature of this langasite
and open new routes to understand the origin of the polar state
High-resolution Fourier-transform XUV photoabsorption spectroscopy of 14N15N
The first comprehensive high-resolution photoabsorption spectrum of 14N15N
has been recorded using the Fourier-transform spectrometer attached to the
Desirs beamline at the Soleil synchrotron. Observations are made in the extreme
ultraviolet (XUV) and span 100,000-109,000 cm-1 (100-91.7 nm). The observed
absorption lines have been assigned to 25 bands and reduced to a set of
transition energies, f values, and linewidths. This analysis has verified the
predictions of a theoretical model of N2 that simulates its photoabsorption and
photodissociation cross section by solution of an isotopomer independent
formulation of the coupled-channel Schroedinger equation. The mass dependence
of predissociation linewidths and oscillator strengths is clearly evident and
many local perturbations of transition energies, strengths, and widths within
individual rotational series have been observed.Comment: 14 pages, 8 figures, one data archiv
Fourier transform spectroscopy and coupled-channel deperturbation treatment of the A1Sigma+ ~ b3Pi complex of KCs molecule
The laser induced fluorescence (LIF) spectra A1Sigma ~ b3Pi --> X1Sigma+ of
KCs dimer were recorded in near infrared region by Fourier Transform
Spectrometer with a resolution of 0.03 cm-1. Overall more than 200 LIF spectra
were rotationally assigned to 39K133Cs and 41K133Cs isotopomers yielding with
the uncertainty of 0.003-0.01 cm-1 more than 3400 rovibronic term values of the
strongly mixed singlet A1Sigma+ and triplet b3Pi states. Experimental data
massive starts from the lowest vibrational level v_A=0 of the singlet and
nonuniformly cover the energy range from 10040 to 13250 cm-1 with rotational
quantum numbers J from 7 to 225. Besides of the dominating regular A1Sigma+ ~
b3P Omega=0 interactions the weak and local heterogenous A1S+ ~ b3P Omega=1
perturbations have been discovered and analyzed. Coupled-channel deperturbation
analysis of the experimental 39K133Cs e-parity termvalues of the A1S+ ~ b3P
complex was accomplished in the framework of the phenomenological 4 x 4
Hamiltonian accounting implicitly for regular interactions with the remote
states manifold. The resulting diabatic potential energy curves of the
interacting states and relevant spin-orbit coupling matrix elements defined
analytically by Expanded Morse Oscillators model reproduce 95% of experimental
data field of the 39K133Cs isotopomer with a standard deviation of 0.004 cm-1
which is consistent with the uncertainty of the experiment. Reliability of the
derived parameters was additionally confirmed by a good agreement between the
predicted and experimental termvalues of 41K133Cs isotopomer. Calculated
intensity distributions in the A ~ b --> X LIF progressions are also consistent
with their experimental counterparts.Comment: 17 pages, 14 figure
Methods for detecting gene × gene interaction in multiplex extended pedigrees
Complex diseases are multifactorial in nature and can involve multiple loci with gene × gene and gene × environment interactions. Research on methods to uncover the interactions between those genes that confer susceptibility to disease has been extensive, but many of these methods have only been developed for sibling pairs or sibships. In this report, we assess the performance of two methods for finding gene × gene interactions that are applicable to arbitrarily sized pedigrees, one based on correlation in per-family nonparametric linkage scores and another that incorporates candidate loci genotypes as covariates into an affected relative pair linkage analysis. The power and type I error rate of both of these methods was addressed using the simulated Genetic Analysis Workshop 14 data. In general, we found detection of the interacting loci to be a difficult problem, and though we experienced some modest success there is a clear need to continue developing new methods and approaches to the problem
- …