2,212,345 research outputs found

    Teleportation Topology

    Full text link
    We discuss the structure of teleportation. By associating matrices to the preparation and measurement states, we show that for a unitary transformation M there is a full teleportation procedure for obtaining M|S> from a given state |S>. The key to this construction is a diagrammatic intepretation of matrix multiplication that applies equally well to a topological composition of a maximum and a minimum that underlies the structure of the teleportation. This paper is a preliminary report on joint work with H. Carteret and S. Lomonaco.Comment: LaTeX document, 16 pages, 8 figures, Talk delivered at the Xth International Conference on Quantum Optics, Minsk, Belaru

    Zero area singularities in general relativity and inverse mean curvature flow

    Full text link
    First we restate the definition of a Zero Area Singularity, recently introduced by H. Bray. We then consider several definitions of mass for these singularities. We use the Inverse Mean Curvature Flow to prove some new results about the mass of a singularity, the ADM mass of the manifold, and the capacity of the singularity.Comment: 13 page

    Representations of SU(1,1) in Non-commutative Space Generated by the Heisenberg Algebra

    Full text link
    SU(1,1) is considered as the automorphism group of the Heisenberg algebra H. The basis in the Hilbert space K of functions on H on which the irreducible representations of the group are realized is explicitly constructed. The addition theorems are derived.Comment: Latex, 8 page

    Casimir energy inside a triangle

    Full text link
    For certain class of triangles (with angles proportional to \fr{\pi}{N}, N≥3N\geq 3) we formulate image method by making use of the group GNG_N generated by reflections with respect to the three lines which form the triangle under consideration. We formulate the renormalization procedure by classification of subgroups of GNG_N and corresponding fixed points in the triangle. We also calculate Casimir energy for such geometries, for scalar massless fields. More detailed calculation is given for odd NN.Comment: Latex, 13 page

    Gravitons and Lightcone Fluctuations II: Correlation Functions

    Get PDF
    A model of a fluctuating lightcone due to a bath of gravitons is further investigated. The flight times of photons between a source and a detector may be either longer or shorter than the light propagation time in the background classical spacetime, and will form a Gaussian distribution centered around the classical flight time. However, a pair of photons emitted in rapid succession will tend to have correlated flight times. We derive and discuss a correlation function which describes this effect. This enables us to understand more fully the operational significance of a fluctuating lightcone. Our results may be combined with observational data on pulsar timing to place some constraints on the quantum state of cosmological gravitons.Comment: 16 pages and two figures, uses eps

    Semiclassical Gravity Theory and Quantum Fluctuations

    Get PDF
    We discuss the limits of validity of the semiclassical theory of gravity in which a classical metric is coupled to the expectation value of the stress tensor. It is argued that this theory is a good approximation only when the fluctuations in the stress tensor are small. We calculate a dimensionless measure of these fluctuations for a scalar field on a flat background in particular cases, including squeezed states and the Casimir vacuum state. It is found that the fluctuations are small for states which are close to a coherent state, which describes classical behavior, but tend to be large otherwise. We find in all cases studied that the energy density fluctuations are large whenever the local energy density is negative. This is taken to mean that the gravitational field of a system with negative energy density, such as the Casimir vacuum, is not described by a fixed classical metric but is undergoing large metric fluctuations. We propose an operational scheme by which one can describe a fluctuating gravitational field in terms of the statistical behavior of test particles. For this purpose we obtain an equation of the form of the Langevin equation used to describe Brownian motion.Comment: In REVTEX. 20pp + 4 figures(not included, available upon request) TUTP-93-

    Gauge Structure of Vacuum String Field Theory

    Full text link
    We study the gauge structure of vacuum string field theory expanded around the D-brane solution, namely, the gauge transformation and the transversality condition of the massless vector fluctuation mode. We find that the gauge transformation on massless vector field is induced as an anomaly; an infinity multiplied by an infinitesimal factor. The infinity comes from the singularity at the edge of the eigenvalue distribution of the Neumann matrix, while the infinitesimal factor from the violation of the equation of motion of the fluctuation modes due to the regularization for the infinity. However, the transversality condition cannot be obtained even if we take into account the anomaly contribution.Comment: 19 pages, LaTeX2
    • …
    corecore