429 research outputs found

    Where surface physics and fluid dynamics meet: rupture of an amphiphile layer by fluid flow

    Full text link
    We investigate the fluctuating pattern created by a jet of fluid impingent upon an amphiphile-covered surface. This microscopically thin layer is initially covered with 50 μ\mum floating particles so that the layer can be visualized. A vertical jet of water located below the surface and directed upward drives a hole in this layer. The hole is particle-free and is surrounded by the particle-laden amphiphile region. The jet ruptures the amphiphile layer creating a particle-free region that is surrounded by the particle-covered surface. The aim of the experiment is to understand the (fluctuating) shape of the ramified interface between the particle-laden and particle-free regions.Comment: published in Journal of Chemical Physic

    Folding Langmuir Monolayers

    Full text link
    The maximum pressure a two-dimensional surfactant monolayer is able to withstand is limited by the collapse instability towards formation of three-dimensional material. We propose a new description for reversible collapse based on a mathematical analogy between the formation of folds in surfactant monolayers and the formation of Griffith Cracks in solid plates under stress. The description, which is tested in a combined microscopy and rheology study of the collapse of a single-phase Langmuir monolayer of 2-hydroxy-tetracosanoic acid (2-OH TCA), provides a connection between the in-plane rheology of LM's and reversible folding

    Static Scaling Behavior of High-Molecular-Weight Polymers in Dilute Solution: A Reexamination

    Full text link
    Previous theories of dilute polymer solutions have failed to distinguish clearly between two very different ways of taking the long-chain limit: (I) NN \to\infty at fixed temperature TT, and (II) NN \to\infty, TTθT \to T_\theta with xNϕ(TTθ)x \equiv N^\phi (T-T_\theta) fixed. I argue that the modern two-parameter theory (continuum Edwards model) applies to case II --- not case I --- and in fact gives exactly the crossover scaling functions for x0x \ge 0 modulo two nonuniversal scale factors. A Wilson-type renormalization group clarifies the connection between crossover scaling functions and continuum field theories. [Also contains a general discussion of the connection between the Wilson and field-theoretic renormalization groups. Comments solicited.]Comment: 10 pages including 1 figure, 181159 bytes Postscript (NYU-TH-93/05/01

    Avoided Critical Behavior in O(n) Systems

    Full text link
    Long-range frustrating interactions, even if their strength is infinitesimal, can give rise to a dramatic proliferations of ground or near-ground states. As a consequence, the ordering temperature can exhibit a discontinuous drop as a function of the frustration. A simple model of the doped Mott insulator, where the short-range tendency of the holes to phase separate competes with long-range Coulomb effects, exhibits this "avoided critical" behavior. This model may serve as a paradigm for many other systems.Comment: 4 pages, 2 figure

    Reversible Random Sequential Adsorption of Dimers on a Triangular Lattice

    Full text link
    We report on simulations of reversible random sequential adsorption of dimers on three different lattices: a one-dimensional lattice, a two-dimensional triangular lattice, and a two-dimensional triangular lattice with the nearest neighbors excluded. In addition to the adsorption of particles at a rate K+, we allow particles to leave the surface at a rate K-. The results from the one-dimensional lattice model agree with previous results for the continuous parking lot model. In particular, the long-time behavior is dominated by collective events involving two particles. We were able to directly confirm the importance of two-particle events in the simple two-dimensional triangular lattice. For the two-dimensional triangular lattice with the nearest neighbors excluded, the observed dynamics are consistent with this picture. The two-dimensional simulations were motivated by measurements of Ca++ binding to Langmuir monolayers. The two cases were chosen to model the effects of changing pH in the experimental system.Comment: 9 pages, 10 figure

    Interface dynamics for layered structures

    Full text link
    We investigate dynamics of large scale and slow deformations of layered structures. Starting from the respective model equations for a non-conserved system, a conserved system and a binary fluid, we derive the interface equations which are a coupled set of equations for deformations of the boundaries of each domain. A further reduction of the degrees of freedom is possible for a non-conserved system such that internal motion of each domain is adiabatically eliminated. The resulting equation of motion contains only the displacement of the center of gravity of domains, which is equivalent to the phase variable of a periodic structure. Thus our formulation automatically includes the phase dynamics of layered structures. In a conserved system and a binary fluid, however, the internal motion of domains turns out to be a slow variable in the long wavelength limit because of concentration conservation. Therefore a reduced description only involving the phase variable is not generally justified.Comment: 16 pages; Latex; revtex aps; one figure. Revision: screened coulomb interaction with coulomb limi

    Universality in the Screening Cloud of Dislocations Surrounding a Disclination

    Full text link
    A detailed analytical and numerical analysis for the dislocation cloud surrounding a disclination is presented. The analytical results show that the combined system behaves as a single disclination with an effective fractional charge which can be computed from the properties of the grain boundaries forming the dislocation cloud. Expressions are also given when the crystal is subjected to an external two-dimensional pressure. The analytical results are generalized to a scaling form for the energy which up to core energies is given by the Young modulus of the crystal times a universal function. The accuracy of the universality hypothesis is numerically checked to high accuracy. The numerical approach, based on a generalization from previous work by S. Seung and D.R. Nelson ({\em Phys. Rev A 38:1005 (1988)}), is interesting on its own and allows to compute the energy for an {\em arbitrary} distribution of defects, on an {\em arbitrary geometry} with an arbitrary elastic {\em energy} with very minor additional computational effort. Some implications for recent experimental, computational and theoretical work are also discussed.Comment: 35 pages, 21 eps file

    Hexatic Order and Surface Ripples in Spherical Geometries

    Full text link
    In flat geometries, two dimensional hexatic order has only a minor effect on capillary waves on a liquid substrate and on undulation modes in lipid bilayers. However, extended bond orientational order alters the long wavelength spectrum of these ripples in spherical geometries. We calculate this frequency shift and suggest that it might be detectable in lipid bilayer vesicles, at the surface of liquid metals and in multielectron bubbles in liquid helium at low temperatures. Hexatic order also leads to a shift in the threshold for the fission instability induced in the later two systems by an excess of electric charge.Comment: 5 pages, 1 figure; revised version; to appear in Phys. Rev. Let
    corecore