10 research outputs found

    Micronutrient synergy—a new tool in effective control of metastasis and other key mechanisms of cancer

    Get PDF
    Consumption of a plant-based diet has been associated with prevention of the development and progression of cancer. We have developed strategies to inhibit cancer development and its spread by targeting common mechanisms used by all types of cancer cells that decrease stability and integrity of connective tissue. Strengthening of collagen and connective tissue can be achieved naturally through the synergistic effects of selected nutrients, such as lysine, proline, ascorbic acid and green tea extract (NM). This micronutrient mixture has exhibited a potent anticancer activity in vivo and in vitro in a few dozen cancer cell lines. Its anti-cancer effects include inhibition of metastasis, tumor growth, matrix metalloproteinase (MMP) secretion, invasion, angiogenesis, and cell growth as well as induction of apoptosis. Many cancers are often diagnosed at later stages, when metastasis has occurred, which standard treatment has been unable to control. Our studies on NM effects on hepatic and pulmonary metastasis demonstrated profound, significant suppression of metastasis in a murine model. Evaluation of effects of NM on xenografts in murine models demonstrated significant reduction in tumor size and tumor burden in all human cancer cell lines tested. In vitro studies demonstrated that NM was very effective in inhibition of cell proliferation (by MTT assay), MMP secretion (by gelatinase zymography), cell invasion (through Matrigel), cell migration (by scratch test), induction of apoptosis (by live green caspase) and induction of pro-apoptotic genes in many diverse cancer cell lines. Furthermore, in vivo and in vitro studies of effects of individual micronutrients compared to their specific combination demonstrated synergistic effects resulting in improved anticancer potency

    Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade.

    Get PDF
    The genomes of cancers deficient in mismatch repair contain exceptionally high numbers of somatic mutations. In a proof-of-concept study, we previously showed that colorectal cancers with mismatch repair deficiency were sensitive to immune checkpoint blockade with antibodies to programmed death receptor-1 (PD-1). We have now expanded this study to evaluate the efficacy of PD-1 blockade in patients with advanced mismatch repair-deficient cancers across 12 different tumor types. Objective radiographic responses were observed in 53% of patients, and complete responses were achieved in 21% of patients. Responses were durable, with median progression-free survival and overall survival still not reached. Functional analysis in a responding patient demonstrated rapid in vivo expansion of neoantigen-specific T cell clones that were reactive to mutant neopeptides found in the tumor. These data support the hypothesis that the large proportion of mutant neoantigens in mismatch repair-deficient cancers make them sensitive to immune checkpoint blockade, regardless of the cancers\u27 tissue of origin

    Proteasome Inhibitors and Lessons Learned from Their Mechanisms of Action and Resistance in Human Cancer

    No full text
    corecore