18,870 research outputs found
Cardy's Formula for Certain Models of the Bond-Triangular Type
We introduce and study a family of 2D percolation systems which are based on
the bond percolation model of the triangular lattice. The system under study
has local correlations, however, bonds separated by a few lattice spacings act
independently of one another. By avoiding explicit use of microscopic paths, it
is first established that the model possesses the typical attributes which are
indicative of critical behavior in 2D percolation problems. Subsequently, the
so called Cardy-Carleson functions are demonstrated to satisfy, in the
continuum limit, Cardy's formula for crossing probabilities. This extends the
results of S. Smirnov to a non-trivial class of critical 2D percolation
systems.Comment: 49 pages, 7 figure
Search for IR Emission from Intracluster Dust in A2029
We have searched for IR emission from the intracluster dust (ICD) in the
galaxy cluster A2029. Weak signals of enhanced extended emission in the cluster
are detected at both 24 and 70 micron. However, the signals are
indistinguishable from the foreground fluctuations. The 24 versus 70 micron
color map does not discriminate the dust emission in the cluster from the
cirrus emission. After excluding the contamination from the point sources, we
obtain upper limits for the extended ICD emission in A2029, 5 x 10^3 Jy/sr at
24 micron and 5 x 10^4 Jy/sr at 70 micron. The upper limits are generally
consistent with the expectation from theoretical calculations and support a
dust deficiency in the cluster compared to the ISM in our galaxy. Our results
suggest that even with the much improved sensitivity of current IR telescopes,
a clear detection of the IR emission from ICD may be difficult due to cirrus
noise.Comment: 5 pages, 4 figures, accepted by ApJ
Positron annihilation induced Auger electron spectroscopy
Recently, Weiss et al. have demonstrated that it is possible to excite Auger transitions by annihilating core electrons using a low energy (less than 30eV) beam of positrons. This mechanism makes possible a new electron spectroscopy, Positron annihilation induced Auger Electron Spectroscopy (PAES). The probability of exciting an Auger transition is proportional to the overlap of the positron wavefunction with atomic core levels. Since the Auger electron energy provides a signature of the atomic species making the transition, PAES makes it possible to determine the overlap of the positron wavefunction with a particular element. PAES may therefore provide a means of detecting positron-atom complexes. Measurements of PAES intensities from clean and adsorbate covered Cu surfaces are presented which indicate that approx. 5 percent of positrons injected into CU at 25eV produce core annihilations that result in Auger transitions
Effective Field Theory of the Zero-Temperature Triangular-Lattice Antiferromagnet: A Monte Carlo Study
Using a Monte Carlo coarse-graining technique introduced by Binder et al., we
have explicitly constructed the continuum field theory for the zero-temperature
triangular Ising antiferromagnet. We verify the conjecture that this is a
gaussian theory of the height variable in the interface representation of the
spin model. We also measure the height-height correlation function and deduce
the stiffness constant. In addition, we investigate the nature of defect-defect
interactions at finite temperatures, and find that the two-dimensional Coulomb
gas scenario applies at low temperatures.Comment: 26 pages, 9 figure
Shot noise of inelastic tunneling through quantum dot systems
We present a theoretical analysis of the effect of inelastic electron
scattering on current and its fluctuations in a mesoscopic quantum dot (QD)
connected to two leads, based on a recently developed nonperturbative technique
involving the approximate mapping of the many-body electron-phonon coupling
problem onto a multichannel single-electron scattering problem. In this, we
apply the B\"uttiker scattering theory of shot noise for a two-terminal
mesoscopic device to the multichannel case with differing weight factors and
examine zero-frequency shot noise for two special cases: (i) a single-molecule
QD and (ii) coupled semiconductor QDs. The nonequilibrium Green's function
method facilitates calculation of single-electron transmission and reflection
amplitudes for inelastic processes under nonequilibrium conditions in the
mapping model. For the single-molecule QD we find that, in the presence of the
electron-phonon interaction, both differential conductance and differential
shot noise display additional peaks as bias-voltage increases due to
phonon-assisted processes. In the case of coupled QDs, our nonperturbative
calculations account for the electron-phonon interaction on an equal footing
with couplings to the leads, as well as the coupling between the two dots. Our
results exhibit oscillations in both the current and shot noise as functions of
the energy difference between the two QDs, resulting from the spontaneous
emission of phonons in the nonlinear transport process. In the "zero-phonon"
resonant tunneling regime, the shot noise exhibits a double peak, while in the
"one-phonon" region, only a single peak appears.Comment: 10 pages, 6 figures, some minor changes, accepted by Phys. Rev.
On the rate of convergence for critical crossing probabilities
For the site percolation model on the triangular lattice and certain generalizations for which Cardy’s Formula has been established we acquire a power law estimate for the rate of convergence of the crossing probabilities to Cardy’s Formula
KDM2B/FBXL10 targets c-Fos for ubiquitylation and degradation in response to mitogenic stimulation.
KDM2B (also known as FBXL10) controls stem cell self-renewal, somatic cell reprogramming and senescence, and tumorigenesis. KDM2B contains multiple functional domains, including a JmjC domain that catalyzes H3K36 demethylation and a CxxC zinc-finger that recognizes CpG islands and recruits the polycomb repressive complex 1. Here, we report that KDM2B, via its F-box domain, functions as a subunit of the CUL1-RING ubiquitin ligase (CRL1/SCF(KDM2B)) complex. KDM2B targets c-Fos for polyubiquitylation and regulates c-Fos protein levels. Unlike the phosphorylation of other SCF (SKP1-CUL1-F-box)/CRL1 substrates that promotes substrates binding to F-box, epidermal growth factor (EGF)-induced c-Fos S374 phosphorylation dissociates c-Fos from KDM2B and stabilizes c-Fos protein. Non-phosphorylatable and phosphomimetic mutations at S374 result in c-Fos protein which cannot be induced by EGF or accumulates constitutively and lead to decreased or increased cell proliferation, respectively. Multiple tumor-derived KDM2B mutations impaired the function of KDM2B to target c-Fos degradation and to suppress cell proliferation. These results reveal a novel function of KDM2B in the negative regulation of cell proliferation by assembling an E3 ligase to targeting c-Fos protein degradation that is antagonized by mitogenic stimulations
- …