28,255 research outputs found

    Number of adaptive steps to a local fitness peak

    Full text link
    We consider a population of genotype sequences evolving on a rugged fitness landscape with many local fitness peaks. The population walks uphill until it encounters a local fitness maximum. We find that the statistical properties of the walk length depend on whether the underlying fitness distribution has a finite mean. If the mean is finite, all the walk length cumulants grow with the sequence length but approach a constant otherwise. Experimental implications of our analytical results are also discussed

    Relevance of inter-composite fermion interaction to the edge Tomonaga-Luttinger liquid

    Full text link
    It is shown that Wen's effective theory correctly describes the Tomonaga-Luttinger liquid at the edge of a system of non-interacting composite fermions. However, the weak residual interaction between composite fermions appears to be a relevant perturbation. The filling factor dependence of the Tomonaga-Luttinger parameter is estimated for interacting composite fermions in a microscopic approach and satisfactory agreement with experiment is achieved. It is suggested that the electron field operator may not have a simple representation in the effective one dimensional theory.Comment: 5 pages; accepted in Phys. Rev. Let

    Activation gaps for the fractional quantum Hall effect: realistic treatment of transverse thickness

    Full text link
    The activation gaps for fractional quantum Hall states at filling fractions ν=n/(2n+1)\nu=n/(2n+1) are computed for heterojunction, square quantum well, as well as parabolic quantum well geometries, using an interaction potential calculated from a self-consistent electronic structure calculation in the local density approximation. The finite thickness is estimated to make ∼\sim30% correction to the gap in the heterojunction geometry for typical parameters, which accounts for roughly half of the discrepancy between the experiment and theoretical gaps computed for a pure two dimensional system. Certain model interactions are also considered. It is found that the activation energies behave qualitatively differently depending on whether the interaction is of longer or shorter range than the Coulomb interaction; there are indications that fractional Hall states close to the Fermi sea are destabilized for the latter.Comment: 32 pages, 13 figure

    Band Structure of the Fractional Quantum Hall Effect

    Full text link
    The eigenstates of interacting electrons in the fractional quantum Hall phase typically form fairly well defined bands in the energy space. We show that the composite fermion theory gives insight into the origin of these bands and provides an accurate and complete microscopic description of the strongly correlated many-body states in the low-energy bands. Thus, somewhat like in Landau's fermi liquid theory, there is a one-to-one correspondence between the low energy Hilbert space of strongly interacting electrons in the fractinal quantum Hall regime and that of weakly interacting electrons in the integer quantum Hall regime.Comment: 10 page

    Evolutionary dynamics on strongly correlated fitness landscapes

    Full text link
    We study the evolutionary dynamics of a maladapted population of self-replicating sequences on strongly correlated fitness landscapes. Each sequence is assumed to be composed of blocks of equal length and its fitness is given by a linear combination of four independent block fitnesses. A mutation affects the fitness contribution of a single block leaving the other blocks unchanged and hence inducing correlations between the parent and mutant fitness. On such strongly correlated fitness landscapes, we calculate the dynamical properties like the number of jumps in the most populated sequence and the temporal distribution of the last jump which is shown to exhibit a inverse square dependence as in evolution on uncorrelated fitness landscapes. We also obtain exact results for the distribution of records and extremes for correlated random variables

    Study of Low Energy Spin Rotons in the Fractional Quantum Hall Effect

    Full text link
    Motivated by the discovery of extremely low energy collective modes in the fractional quantum Hall effect (Kang, Pinczuk {\em et al.}), with energies below the Zeeman energy, we study theoretically the spin reversed excitations for fractional quantum Hall states at ν=2/5\nu=2/5 and 3/7 and find qualitatively different behavior than for ν=1/3\nu=1/3. We find that a low-energy, charge-neutral "spin roton," associated with spin reversed excitations that involve a change in the composite-fermion Landau level index, has energy in reasonable agreement with experiment.Comment: Postscript figures included. Accepted in Phys. Rev. B (Rapid Communication

    Extreme value distributions for weakly correlated fitnesses in block model

    Full text link
    We study the limit distribution of the largest fitness for two models of weakly correlated and identically distributed random fitnesses. The correlated fitness is given by a linear combination of a fixed number of independent random variables drawn from a common parent distribution. We find that for certain class of parent distributions, the extreme value distribution for correlated random variables can be related either to one of the known limit laws for independent variables or the parent distribution itself. For other cases, new limiting distributions appear. The conditions under which these results hold are identified.Comment: Expanded, added reference

    Evolutionary dynamics of the most populated genotype on rugged fitness landscapes

    Full text link
    We consider an asexual population evolving on rugged fitness landscapes which are defined on the multi-dimensional genotypic space and have many local optima. We track the most populated genotype as it changes when the population jumps from a fitness peak to a better one during the process of adaptation. This is done using the dynamics of the shell model which is a simplified version of the quasispecies model for infinite populations and standard Wright-Fisher dynamics for large finite populations. We show that the population fraction of a genotype obtained within the quasispecies model and the shell model match for fit genotypes and at short times, but the dynamics of the two models are identical for questions related to the most populated genotype. We calculate exactly several properties of the jumps in infinite populations some of which were obtained numerically in previous works. We also present our preliminary simulation results for finite populations. In particular, we measure the jump distribution in time and find that it decays as t−2t^{-2} as in the quasispecies problem.Comment: Minor changes. To appear in Phys Rev
    • …
    corecore