138,930 research outputs found
Multiple H-Rearrangements in 10-Benzylthio-dithranol Radical Cations
10-Alkylthio- and 10-arylthio-derivatives of dithranol (anthralin;
1,8-dihydroxy-9-anthrone) are of interest in search for new anti-psoriatic
agents2 , 3 ). By working out ms procedures for unequivocal identification of
trace amounts of these compounds4 ) it was established that in case of
10-phenylthio-dithranol putative by-products, especially one giving rise to
ions at m/z = 226 (dithranol), are artefacts of thermal reaction in the mass
spectrometer1). In the EI-MS of those 10-substituted dithranols containing
a S-CH2R chain, however, these ions (m/z = 226) arise from M + * as well.
Scope and mechanism of their formation was examined by analyzing
compound 1 and its D-labelled derivatives 2 and 3
T invariance of Higgs interactions in the standard model
In the standard model, the Cabibbo-Kobayashi-Maskawa matrix, which
incorporates the time-reversal violation shown by the charged current weak
interactions, originates from the Higgs-quark interactions. The Yukawa
interactions of quarks with the physical Higgs particle can contain further
complex phase factors, but nevertheless conserve T, as shown by constructing
the fermion T transformation and the invariant euclidean fermion measure.Comment: LaTeX, 4 pages; presented at PASCOS'0
Doppler lidar signal and turbulence study
Wind fields were measured with the ground-based NASA/MSFC lidar are compared with the in situ NASA RB-57 aircraft measurements. The mean wind fields, the turbulence intensities, and the turbulence spectra determined from measurements by both systems are in very good agreement. Turbulence intensities and spectra were calculated from the fluctuations with time in the radial wind speed component. The second moment or Doppler frequency spectral width of the lidar measurements was also compared with turbulence intensities measured by the aircraft. These second moments could only be resolved at the very low altitudes (in three range bins). Turbulence intensities estimated from the spectral width data were an order of magnitude higher than those measured by the aircraft. An interesting boundary layer evolved during the progress of the experiment. The breakup of a stable boundary layer resulted in winds blowing in one direction above 600 m msl and in the opposite direction below that level. Both the aircraft and the lidar systems clearly identified this unusual boundary layer flow and showed the identical trends
Test results of modified electrical charged particle generator for application to fog dispersal
Modifications to a charged particle generator for use in fog dispersal applications were made and additional testing carried out. The modified nozzle, however, did not work as planned, and reported results are the unmodified nozzle. The addition of a positive displacement pump to supply the liquid water was highly successful. Measurements of the generator output current were made with a cylindrical collector system as well as with the needle probe used in previous studies. Measurements with the cylindrical collector and the needle probe showed identical agreement within the variability of the experiment. A high-voltage prove was purchased, and measurements of the corona voltage as well as the voltage variation in the charged particle jet were made. Electric fields in the vertical direction on the order of 1,000,000 v/m were measured. The voltage distribution along the centerline of the jet was compared with the numerical solutions of the Poisson equation and showed very good agreement. Velocity measurements using a pitot tube were made. The resulting measurements were compared with theoretical and other reported experimental results. The measured data showed the appropriate trends and agreed well with reported results. Based on the measured current-to-mass ratio from the charged particle generator, a calculation of the average droplet size was made. Droplet sizes were estimated to range between 0.8 and 0.4 microns. Using measured data, an analysis of the height to which the droplet can be dispersed by the charged particle generator was made. Although the mathematical model is highly simplified, the results indicated that particles would achieve heights on the order of 80 m
Transition Temperature of a Uniform Imperfect Bose Gas
We calculate the transition temperature of a uniform dilute Bose gas with
repulsive interactions, using a known virial expansion of the equation of
state. We find that the transition temperature is higher than that of an ideal
gas, with a fractional increase K_0(na^3)^{1/6}, where n is the density and a
is the S-wave scattering length, and K_0 is a constant given in the paper. This
disagrees with all existing results, analytical or numerical. It agrees exactly
in magnitude with a result due to Toyoda, but has the opposite sign.Comment: Email correspondence to [email protected] ; 2 pages using REVTe
Dressing the electromagnetic nucleon current
A field-theory-based approach to pion photoproduction off the nucleon is used
to derive a microscopically consistent formulation of the fully dressed
electromagnetic nucleon current in an effective Lagrangian formalism. It is
shown how the rigorous implementation of local gauge invariance at all levels
of the reaction dynamics provides equations that lend themselves to practically
manageable truncations of the underlying nonlinearities of the problem. The
requirement of consistency also suggests a novel way of treating the pion
photoproduction problem. Guided by a phenomenological implementation of gauge
invariance for the truncated equations that has proved successful for pion
photoproduction, an expression for the fully dressed nucleon current is given
that satisfies the Ward-Takahashi identity for a fully dressed nucleon
propagator as a matter of course. Possible applications include meson photo-
and electroproduction processes, bremsstrahlung, Compton scattering, and
processes off nucleons.Comment: 10 pages, 9 figure
Discovery of {\gamma}-ray pulsation and X-ray emission from the black widow pulsar PSR J2051-0827
We report the discovery of pulsed {\gamma}-ray emission and X-ray emission
from the black widow millisecond pulsar PSR J2051-0827 by using the data from
the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope and
the Advanced CCD Imaging Spectrometer array (ACIS-S) on the Chandra X-ray
Observatory. Using 3 years of LAT data, PSR J2051-0827 is clearly detected in
{\gamma}-ray with a signicance of \sim 8{\sigma} in the 0.2 - 20 GeV band. The
200 MeV - 20 GeV {\gamma}-ray spectrum of PSR J2051-0827 can be modeled by a
simple power- law with a photon index of 2.46 \pm 0.15. Significant (\sim
5{\sigma}) {\gamma}-ray pulsations at the radio period were detected. PSR
J2051-0827 was also detected in soft (0.3-7 keV) X-ray with Chandra. By
comparing the observed {\gamma}-rays and X-rays with theoretical models, we
suggest that the {\gamma}-ray emission is from the outer gap while the X-rays
can be from intra-binary shock and pulsar magnetospheric synchrotron emissions.Comment: 10 pages, 4 figures, accepted by ApJ on Jan 28, 201
A first step toward higher order chain rules in abelian functor calculus
One of the fundamental tools of undergraduate calculus is the chain rule. The
notion of higher order directional derivatives was developed by Huang,
Marcantognini, and Young, along with a corresponding higher order chain rule.
When Johnson and McCarthy established abelian functor calculus, they proved a
chain rule for functors that is analogous to the directional derivative chain
rule when . In joint work with Bauer, Johnson, and Riehl, we defined an
analogue of the iterated directional derivative and provided an inductive proof
of the analogue to the chain rule of Huang et al.
This paper consists of the initial investigation of the chain rule found in
Bauer et al., which involves a concrete computation of the case when . We
describe how to obtain the second higher order directional derivative chain
rule for abelian functors. This proof is fundamentally different in spirit from
the proof given in Bauer et al. as it relies only on properties of cross
effects and the linearization of functors
Multivariate adaptive regression splines for estimating riverine constituent concentrations
Regression-based methods are commonly used for riverine constituent concentration/flux estimation, which is essential for guiding water quality protection practices and environmental decision making. This paper developed a multivariate adaptive regression splines model for estimating riverine constituent concentrations (MARS-EC). The process, interpretability and flexibility of the MARS-EC modelling approach, was demonstrated for total nitrogen in the Patuxent River, a major river input to Chesapeake Bay. Model accuracy and uncertainty of the MARS-EC approach was further analysed using nitrate plus nitrite datasets from eight tributary rivers to Chesapeake Bay. Results showed that the MARS-EC approach integrated the advantages of both parametric and nonparametric regression methods, and model accuracy was demonstrated to be superior to the traditionally used ESTIMATOR model. MARS-EC is flexible and allows consideration of auxiliary variables; the variables and interactions can be selected automatically. MARS-EC does not constrain concentration-predictor curves to be constant but rather is able to identify shifts in these curves from mathematical expressions and visual graphics. The MARS-EC approach provides an effective and complementary tool along with existing approaches for estimating riverine constituent concentrations
Discovery of gamma-ray emission from the supernova remnant Kes 17 with Fermi Large Area Telescope
We report the discovery of GeV emission at the position of supernova remnant
Kes 17 by using the data from the Large Area Telescope on board the Fermi
Gamma-ray Space Telescope. Kes 17 can be clearly detected with a significance
of ~12 sigma in the 1 - 20 GeV range. Moreover, a number of gamma-ray sources
were detected in its vicinity. The gamma-ray spectrum of Kes 17 can be well
described by a simple power-law with a photon index of ~ 2.4. Together with the
multi-wavelength evidence for its interactions with the nearby molecular cloud,
the gamma-ray detection suggests that Kes 17 is a candidate acceleration site
for cosmic-rays.Comment: 13 pages, 3 figures, 1 table, accepted for publication in ApJ Lette
- …