35,901 research outputs found

    Transport properties of diluted magnetic semiconductors: Dynamical mean field theory and Boltzmann theory

    Full text link
    The transport properties of diluted magnetic semiconductors (DMS) are calculated using dynamical mean field theory (DMFT) and Boltzmann transport theory. Within DMFT we study the density of states and the dc-resistivity, which are strongly parameter dependent such as temperature, doping, density of the carriers, and the strength of the carrier-local impurity spin exchange coupling. Characteristic qualitative features are found distinguishing weak, intermediate, and strong carrier-spin coupling and allowing quantitative determination of important parameters defining the underlying ferromagnetic mechanism. We find that spin-disorder scattering, formation of bound state, and the population of the minority spin band are all operational in DMFT in different parameter range. We also develop a complementary Boltzmann transport theory for scattering by screened ionized impurities. The difference in the screening properties between paramagnetic (T>TcT>T_c) and ferromagnetic (T<TcT<T_c) states gives rise to the temperature dependence (increase or decrease) of resistivity, depending on the carrier density, as the system goes from the paramagnetic phase to the ferromagnetic phase. The metallic behavior below TcT_c for optimally doped DMS samples can be explained in the Boltzmann theory by temperature dependent screening and thermal change of carrier spin polarization.Comment: 15 pages, 15 figure

    Influence of Domain Wall on Magnetocaloric Effect in GdPt2_{2}

    Full text link
    The resistivity, magnetoresistance and in-field heat capacity measurements were performed on GdPt2_{2} intermetallic compound. The magnetocaloric parameters Ξ”Tad\Delta T_{ad} and βˆ’Ξ”S-\Delta S were derived from the in-field heat capacity data. Comparison has been made between the magnetocaloric effect βˆ’Ξ”S-\Delta S and difference in resistivity βˆ’Ξ”Ο-\Delta \rho (=ρ(H)βˆ’Ο(0))(=\rho(H)-\rho(0)) as a function of temperature. There is distinct difference in the temperature dependence of βˆ’Ξ”S-\Delta S and βˆ’Ξ”Ο-\Delta \rho below the ferromagnetic transition temperature. However after removing the domain wall contribution from βˆ’Ξ”Ο-\Delta \rho, the nature of βˆ’Ξ”S-\Delta S and βˆ’Ξ”Ο-\Delta \rho dependence as a function of temperature are similar. Our observation indicates that the domain wall contribution in magnetocaloric effect is negligible in spite of the fact that it has significant contribution in magnetotransport.Comment: RevTex 4 pages, 6 figure

    Muon anomaly and a lower bound on higgs mass due to a light stabilized radion in the Randall-Sundrum model

    Full text link
    We investigate the Randall-Sundrum model with a light stabilized radion (required to fix the size of the extra dimension) in the light of muon anomalous magnetic moment aΞΌ[=(gβˆ’2)2]a_\mu [= \frac{(g - 2)}{2}]. Using the recent data (obtained from the E821 experiment of the BNL collaboration) which differs by 2.6Οƒ2.6 \sigma from the Standard Model result, we obtain constraints on radion mass \mphi and radion vev \vphi. In the presence of a radion the beta functions \beta(\l) and Ξ²(gt)\beta(g_t) of higgs quartic coupling (\l) and top-Yukawa coupling (gtg_t) gets modified. We find these modified beta functions. Using these beta functions together with the anomaly constrained \mphi and \vphi, we obtain lower bound on higgs mass mhm_h. We compare our result with the present LEP2 bound on mhm_h.Comment: Version to be appeared in IJMP

    Supernovae as Probes of Extra Dimensions

    Get PDF
    Since the dawn of the new millennium, there has been a revived interest in the concept of extra dimensions.In this scenario all the standard model matter and gauge fields are confined to the 4 dimensions and only gravity can escape to higher dimensions of the universe.This idea can be tested using table-top experiments, collider experiments, astrophysical or cosmological observations. The main astrophysical constraints come from the cooling rate of supernovae, neutron stars, red giants and the sun. In this article, we consider the energy loss mechanism of SN1987A and study the constraints it places on the number and size of extra dimensions and the higher dimensional Planck scale.Comment: 5 pages, no figures, new references are adde

    A competing order scenario of two-gap behavior in hole doped cuprates

    Full text link
    Angle-dependent studies of the gap function provide evidence for the coexistence of two distinct gaps in hole doped cuprates, where the gap near the nodal direction scales with the superconducting transition temperature TcT_c, while that in the antinodal direction scales with the pseudogap temperature. We present model calculations which show that most of the characteristic features observed in the recent angle-resolved photoemission spectroscopy (ARPES) as well as scanning tunneling microscopy (STM) two-gap studies are consistent with a scenario in which the pseudogap has a non-superconducting origin in a competing phase. Our analysis indicates that, near optimal doping, superconductivity can quench the competing order at low temperatures, and that some of the key differences observed between the STM and ARPES results can give insight into the superlattice symmetry of the competing order.Comment: 9 pages, 7 fig
    • …
    corecore