16,854 research outputs found

    Thermal evolution of the Schwinger model with Matrix Product Operators

    Full text link
    We demonstrate the suitability of tensor network techniques for describing the thermal evolution of lattice gauge theories. As a benchmark case, we have studied the temperature dependence of the chiral condensate in the Schwinger model, using matrix product operators to approximate the thermal equilibrium states for finite system sizes with non-zero lattice spacings. We show how these techniques allow for reliable extrapolations in bond dimension, step width, system size and lattice spacing, and for a systematic estimation and control of all error sources involved in the calculation. The reached values of the lattice spacing are small enough to capture the most challenging region of high temperatures and the final results are consistent with the analytical prediction by Sachs and Wipf over a broad temperature range.Comment: 6 pages, 11 figure

    H_2 Absorption and Fluorescence for Gamma Ray Bursts in Molecular Clouds

    Get PDF
    If a gamma ray burst with strong UV emission occurs in a molecular cloud, there will be observable consequences resulting from excitation of the surrounding H2. The UV pulse from the GRB will pump H2 into vibrationally-excited levels which produce strong absorption at wavelengths < 1650 A. As a result, both the prompt flash and later afterglow will exhibit strong absorption shortward of 1650 A, with specific spectroscopic features. Such a cutoff in the emission from GRB 980329 may already have been observed by Fruchter et al.; if so, GRB 980329 was at redshift 3.0 < z < 4.4 . BVRI photometry of GRB 990510 could also be explained by H2 absorption if GRB 990510 is at redshift 1.6 < z < 2.3. The fluorescence accompanying the UV pumping of the H2 will result in UV emission from the GRB which can extend over days or months, depending on parameters of the ambient medium and beaming of the GRB flash. The 7.5-13.6 eV fluorescent luminosity is \sim 10^{41.7} erg/s for standard estimates of the parameters of the GRB and the ambient medium. Spectroscopy can distinguish this fluorescent emission from other possible sources of transient optical emission, such as a supernova.Comment: 13 pages, including 4 figures. submitted to Ap.J.(Letters

    Химический состав донных отложений реки Васюган и ее притоков

    Get PDF
    Приведены результаты изучения химического состава донных отложений реки Васюган Томской области и ее притоков. Установлен средний за 1997-2005 гг. уровень содержания нефтепродуктов и более 20-и химических элементов. Выявлены взаимосвязи между концентрациями нефтепродуктов и хлорид-иона в донных отложениях и речных водах. Показано, что донные отложения водотоков в среднем по бассейну реки Васюган характеризуются как умеренно загрязненные и загрязненные

    Lower Bounds for Protrusion Replacement by Counting Equivalence Classes

    Get PDF
    Garnero et al. [SIAM J. Discrete Math. 2015, 29(4):1864-1894] recently introduced a framework based on dynamic programming to make applications of the protrusion replacement technique constructive and to obtain explicit upper bounds on the involved constants. They show that for several graph problems, for every boundary size t one can find an explicit set R_t of representatives. Any subgraph H with a boundary of size t can be replaced with a representative H\u27 in R_t such that the effect of this replacement on the optimum can be deduced from H and H\u27 alone. Their upper bounds on the size of the graphs in R_t grow triple-exponentially with t. In this paper we complement their results by lower bounds on the sizes of representatives, in terms of the boundary size t. For example, we show that each set of planar representatives R_t for the Independent Set problem contains a graph with Omega(2^t / sqrt{4t}) vertices. This lower bound even holds for sets that only represent the planar subgraphs of bounded pathwidth. To obtain our results we provide a lower bound on the number of equivalence classes of the canonical equivalence relation for Independent Set on t-boundaried graphs. We also find an elegant characterization of the number of equivalence classes in general graphs, in terms of the number of monotone functions of a certain kind. Our results show that the number of equivalence classes is at most 2^{2^t}, improving on earlier bounds of the form (t+1)^{2^t}

    Spin precession and inverted Hanle effect in a semiconductor near a finite-roughness ferromagnetic interface

    Get PDF
    Although the creation of spin polarization in various non-magnetic media via electrical spin injection from a ferromagnetic tunnel contact has been demonstrated, much of the basic behavior is heavily debated. It is reported here for semiconductor/Al2O3/ferromagnet tunnel structures based on Si or GaAs that local magnetostatic fields arising from interface roughness dramatically alter and even dominate the accumulation and dynamics of spins in the semiconductor. Spin precession in the inhomogeneous magnetic fields is shown to reduce the spin accumulation up to tenfold, and causes it to be inhomogeneous and non-collinear with the injector magnetization. The inverted Hanle effect serves as experimental signature. This interaction needs to be taken into account in the analysis of experimental data, particularly in extracting the spin lifetime and its variation with different parameters (temperature, doping concentration). It produces a broadening of the standard Hanle curve and thereby an apparent reduction of the spin lifetime. For heavily doped n-type Si at room temperature it is shown that the spin lifetime is larger than previously determined, and a new lower bound of 0.29 ns is obtained. The results are expected to be general and occur for spins near a magnetic interface not only in semiconductors but also in metals, organic and carbon-based materials including graphene, and in various spintronic device structures.Comment: Final version, with text restructured and appendices added (25 pages, 9 figures). To appear in Phys. Rev.

    Research on mechanisms of alloy strengthening. Part 1 - Strengthening through fine particle dispersion. Part 2 - Control of structure and properties by means of rapid quenching of liquid metals /splat cooling/ Semiannual report

    Get PDF
    Alloy strengthening mechanisms - strengthening by fine particle dispersion, and structure and properties control by rapid quenching or splat cooling of liquid metal

    Far-Infrared and Sub-Millimeter Observations and Physical Models of the Reflection Nebula Ced 201

    Full text link
    ISO [C II] 158 micron, [O I] 63 micron, and H_2 9 and 17 micron observations are presented of the reflection nebula Ced 201, which is a photon-dominated region illuminated by a B9.5 star with a color temperature of 10,000 K (a cool PDR). In combination with ground based [C I] 609 micron, CO, 13CO, CS and HCO+ data, the carbon budget and physical structure of the reflection nebula are constrained. The obtained data set is the first one to contain all important cooling lines of a cool PDR, and allows a comparison to be made with classical PDRs. To this effect one- and three-dimensional PDR models are presented which incorporate the physical characteristics of the source, and are aimed at understanding the dominant heating processes of the cloud. The contribution of very small grains to the photo-electric heating rate is estimated from these models and used to constrain the total abundance of PAHs and small grains. Observations of the pure rotational H_2 lines with ISO, in particular the S(3) line, indicate the presence of a small amount of very warm, approximately 330 K, molecular gas. This gas cannot be accommodated by the presented models.Comment: 32 pages, 7 figures, in LaTeX. To be published in Ap

    Combined method for ab initio

    Full text link

    Structural and Magnetic Properties of Trigonal Iron

    Full text link
    First principles calculations of the electronic structure of trigonal iron were performed using density function theory. The results are used to predict lattice spacings, magnetic moments and elastic properties; these are in good agreement with experiment for both the bcc and fcc structures. We find however, that in extracting these quantities great care must be taken in interpreting numerical fits to the calculated total energies. In addition, the results for bulk iron give insight into the properties of thin iron films. Thin films grown on substrates with mismatched lattice constants often have non-cubic symmetry. If they are thicker than a few monolayers their electronic structure is similar to a bulk material with an appropriately distorted geometry, as in our trigonal calculations. We recast our bulk results in terms of an iron film grown on the (111) surface of an fcc substrate, and find the predicted strain energies and moments accurately reflect the trends for iron growth on a variety of substrates.Comment: 11 pages, RevTeX,4 tar'd,compressed, uuencoded Postscript figure

    Resonant Inelastic X-Ray Scattering at the K Edge of Ge

    Full text link
    We study the resonant inelastic x-ray scattering (RIXS) at the KK edge of Ge. We measure RIXS spectra with systematically varying momenta in the final state. The spectra are a measure of exciting an electron-hole pair. We find a single peak structure (except the elastic peak) as a function of photon energy, which is nearly independent of final-state momenta. We analyze the experimental data by means of the band structure calculation. The calculation reproduces well the experimental shape, clarifying the implication of the spectral shape.Comment: 17 pages,9 figures, Please also see our related paper: cond-mat/040500
    corecore