72 research outputs found

    Photodisintegration of the triton with realistic potentials

    Get PDF
    The process γ+t→n+d\gamma + t \to n + d is treated by means of three-body integral equations employing in their kernel the W-Matrix representation of the subsystem amplitudes. As compared to the plane wave (Born) approximation the full solution of the integral equations, which takes into account the final state interaction, shows at low energies a 24% enhancement. The calculations are based on the semirealistic Malfliet-Tjon and the realistic Paris and Bonn B potentials. For comparison with earlier calculations we also present results for the Yamaguchi potential. In the low-energy region a remarkable potential dependence is observed, which vanishes at higher energies.Comment: 16 pages REVTeX, 8 postscript figures included, uses epsfig.st

    The pd <--> pi+ t reaction around the Delta resonance

    Full text link
    The pd pi+ t process has been calculated in the energy region around the Delta-resonance with elementary production/absorption mechanisms involving one and two nucleons. The isobar degrees of freedom have been explicitly included in the two-nucleon mechanism via pi-- and rho-exchange diagrams. No free parameters have been employed in the analysis since all the parameters have been fixed in previous studies on the simpler pp pi+ d process. The treatment of the few-nucleon dynamics entailed a Faddeev-based calculation of the reaction, with continuum calculations for the initial p-d state and accurate solutions of the three-nucleon bound-state equation. The integral cross-section was found to be quite sensitive to the NN interaction employed while the angular dependence showed less sensitivity. Approximately a 4% effect was found for the one-body mechanism, for the three-nucleon dynamics in the p-d channel, and for the inclusion of a large, possibly converged, number of three-body partial states, indicating that these different aspects are of comparable importance in the calculation of the spin-averaged observables.Comment: 40 Pages, RevTex, plus 5 PostScript figure

    Deuteron life-time in hot and dense nuclear matter near equilibrium

    Get PDF
    We consider deuteron formation in hot and dense nuclear matter close to equilibrium and evaluate the life-time of the deuteron fluctuations within the linear response theory. To this end we derive a generalized linear Boltzmann equation where the collision integral is related to equilibrium correlation functions. In this framework we then utilize finite temperature Green functions to evaluate the collision integrals. The elementary reaction cross section is evaluated within the Faddeev approach that is suitably modified to reflect the properties of the surrounding hot and dense matter.Comment: 15 pages, 5 figure

    Photonuclear Reactions of Three-Nucleon Systems

    Get PDF
    We discuss the available data for the differential and the total cross section for the photodisintegration of 3^3He and 3^3H and the corresponding inverse reactions below EΞ³=100E_\gamma = 100 MeV by comparing with our calculations using realistic NNNN interactions. The theoretical results agree within the errorbars with the data for the total cross sections. Excellent agreement is achieved for the angular distribution in case of 3^3He, whereas for 3^3H a discrepancy between theory and experiment is found.Comment: 11 pages (twocolumn), 12 postscript figures included, uses psfig, RevTe

    Drosophila neuroblasts retain the daughter centrosome

    Get PDF
    During asymmetric mitosis, both in male Drosophila germline stem cells and in mouse embryo neural progenitors, the mother centrosome is retained by the self-renewed cell; hence suggesting that mother centrosome inheritance might contribute to stemness. We test this hypothesis in Drosophila neuroblasts (NBs) tracing photo converted centrioles and a daughter-centriole-specific marker generated by cloning the Drosophila homologue of human Centrobin. Here we show that upon asymmetric mitosis, the mother centrosome is inherited by the differentiating daughter cell. Our results demonstrate maturation-dependent centrosome fate in Drosophila NBs and that the stemness properties of these cells are not linked to mother centrosome inheritance

    Systematic Functional Analysis of Bicaudal-D Serine Phosphorylation and Intragenic Suppression of a Female Sterile Allele of BicD

    Get PDF
    Protein phosphorylation is involved in posttranslational control of essentially all biological processes. Using mass spectrometry, recent analyses of whole phosphoproteomes led to the identification of numerous new phosphorylation sites. However, the function of most of these sites remained unknown. We chose the Drosophila Bicaudal-D protein to estimate the importance of individual phosphorylation events. Being involved in different cellular processes, BicD is required for oocyte determination, for RNA transport during oogenesis and embryogenesis, and for photoreceptor nuclei migration in the developing eye. The numerous roles of BicD and the available evidence for functional importance of BicD phosphorylation led us to identify eight phosphorylation sites of BicD, and we tested a total of 14 identified and suspected phosphoserine residues for their functional importance in vivo in flies. Surprisingly, all these serines turned out to be dispensable for providing sufficient basal BicD activity for normal growth and development. However, in a genetically sensitized background where the BicDA40V protein variant provides only partial activity, serine 103 substitutions are not neutral anymore, but show surprising differences. The S103D substitution completely inactivates the protein, whereas S103A behaves neutral, and the S103F substitution, isolated in a genetic screen, restores BicDA40V function. Our results suggest that many BicD phosphorylation events may either be fortuitous or play a modulating function as shown for Ser103. Remarkably, amongst the Drosophila serines we found phosphorylated, Ser103 is the only one that is fully conserved in mammalian BicD

    dp53 Restrains Ectopic Neural Stem Cell Formation in the Drosophila Brain in a Non-Apoptotic Mechanism Involving Archipelago and Cyclin E

    Get PDF
    Accumulating evidence suggests that tumor-initiating stem cells or cancer stem cells (CSCs) possibly originating from normal stem cells may be the root cause of certain malignancies. How stem cell homeostasis is impaired in tumor tissues is not well understood, although certain tumor suppressors have been implicated. In this study, we use the Drosophila neural stem cells (NSCs) called neuroblasts as a model to study this process. Loss-of-function of Numb, a key cell fate determinant with well-conserved mammalian counterparts, leads to the formation of ectopic neuroblasts and a tumor phenotype in the larval brain. Overexpression of the Drosophila tumor suppressor p53 (dp53) was able to suppress ectopic neuroblast formation caused by numb loss-of-function. This occurred in a non-apoptotic manner and was independent of Dacapo, the fly counterpart of the well-characterized mammalian p53 target p21 involved in cellular senescence. The observation that dp53 affected Edu incorporation into neuroblasts led us to test the hypothesis that dp53 acts through regulation of factors involved in cell cycle progression. Our results show that the inhibitory effect of dp53 on ectopic neuroblast formation was mediated largely through its regulation of Cyclin E (Cyc E). Overexpression of Cyc E was able to abrogate dp53β€²s ability to rescue numb loss-of-function phenotypes. Increasing Cyc E levels by attenuating Archipelago (Ago), a recently identified transcriptional target of dp53 and a negative regulator of Cyc E, had similar effects. Conversely, reducing Cyc E activity by overexpressing Ago blocked ectopic neuroblast formation in numb mutant. Our results reveal an intimate connection between cell cycle progression and NSC self-renewal vs. differentiation control, and indicate that p53-mediated regulation of ectopic NSC self-renewal through the Ago/Cyc E axis becomes particularly important when NSC homeostasis is perturbed as in numb loss-of-function condition. This has important clinical implications

    Role of Scrib and Dlg in anterior-posterior patterning of the follicular epithelium during Drosophila oogenesis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Proper patterning of the follicle cell epithelium over the egg chamber is essential for the <it>Drosophila </it>egg development. Differentiation of the epithelium into several distinct cell types along the anterior-posterior axis requires coordinated activities of multiple signaling pathways. Previously, we reported that <it>lethal(2)giant larvae </it>(<it>lgl</it>), a <it>Drosophila </it>tumor suppressor gene, is required in the follicle cells for the posterior follicle cell (PFC) fate induction at mid-oogenesis. Here we explore the role of another two tumor suppressor genes, <it>scribble </it>(<it>scrib</it>) and <it>discs large </it>(<it>dlg</it>), in the epithelial patterning.</p> <p>Results</p> <p>We found that removal of <it>scrib </it>or <it>dlg </it>function from the follicle cells at posterior terminal of the egg chamber causes a complete loss of the PFC fate. Aberrant specification and differentiation of the PFCs in the mosaic clones can be ascribed to defects in coordinated activation of the EGFR, JAK and Notch signaling pathways in the multilayered cells. Meanwhile, the clonal analysis revealed that loss-of-function mutations in <it>scrib/dlg </it>at the anterior domains result in a partially penetrant phenotype of defective induction of the stretched and centripetal cell fate, whereas specification of the border cell fate can still occur in the most anterior region of the mutant clones. Further, we showed that <it>scrib </it>genetically interacts with <it>dlg </it>in regulating posterior patterning of the epithelium.</p> <p>Conclusion</p> <p>In this study we provide evidence that <it>scrib </it>and <it>dlg </it>function differentially in anterior and posterior patterning of the follicular epithelium at oogenesis. Further genetic analysis indicates that <it>scrib </it>and <it>dlg </it>act in a common pathway to regulate PFC fate induction. This study may open another window for elucidating role of <it>scrib/dlg </it>in controlling epithelial polarity and cell proliferation during development.</p
    • …
    corecore