751 research outputs found
On the entropy of plasmas described with regularized -distributions
In classical thermodynamics the entropy is an extensive quantity, i.e.\ the
sum of the entropies of two subsystems in equilibrium with each other is equal
to the entropy of the full system consisting of the two subsystems. The
extensitivity of entropy has been questioned in the context of a theoretical
foundation for the so-called -distributions, which describe plasma
constituents with power-law velocity distributions. We demonstrate here, by
employing the recently introduced {\it regularized -distributions},
that entropy can be defined as an extensive quantity even for such
power-law-like distributions that truncate exponentially.Comment: Preprint accepted for publication in Phys. Rev.
MHD Simulation of the Inner-Heliospheric Magnetic Field
Maps of the radial magnetic field at a heliocentric distance of ten solar
radii are used as boundary conditions in the MHD code CRONOS to simulate a 3D
inner-heliospheric solar wind emanating from the rotating Sun out to 1 AU. The
input data for the magnetic field are the result of solar surface flux
transport modelling using observational data of sunspot groups coupled with a
current sheet source surface model. Amongst several advancements, this allows
for higher angular resolution than that of comparable observational data from
synoptic magnetograms. The required initial conditions for the other MHD
quantities are obtained following an empirical approach using an inverse
relation between flux tube expansion and radial solar wind speed. The
computations are performed for representative solar minimum and maximum
conditions, and the corresponding state of the solar wind up to the Earths
orbit is obtained. After a successful comparison of the latter with
observational data, they can be used to drive outer-heliospheric models.Comment: for associated wmv movie files accompanying Figure 7, see
http://www.tp4.rub.de/~tow/max.wmv and http://www.tp4.rub.de/~tow/min.wm
Clustering of passive impurities in MHD turbulence
The transport of heavy, neutral or charged, point-like particles by
incompressible, resistive magnetohydrodynamic (MHD) turbulence is investigated
by means of high-resolution numerical simulations. The spatial distribution of
such impurities is observed to display strong deviations from homogeneity, both
at dissipative and inertial range scales. Neutral particles tend to cluster in
the vicinity of coherent vortex sheets due to their viscous drag with the flow,
leading to the simultaneous presence of very concentrated and almost empty
regions. The signature of clustering is different for charged particles. These
exhibit in addition to the drag the Lorentz-force. The regions of spatial
inhomogeneities change due to attractive and repulsive vortex sheets. While
small charges increase clustering, larger charges have a reverse effect.Comment: 9 pages, 13 figure
Role of dipolar interactions in a system of Ni nanoparticles studied by magnetic susceptibility measurements
The role of dipolar interactions among Ni nanoparticles (NP) embedded in an
amorphous SiO2/C matrix with different concentrations has been studied
performing ac magnetic susceptibility Chi_ac measurements. For very diluted
samples, with Ni concentrations < 4 wt % Ni or very weak dipolar interactions,
the data are well described by the Neel-Arrhenius law. Increasing Ni
concentration to values up to 12.8 wt % Ni results in changes in the
Neel-Arrhenius behavior, the dipolar interactions become important, and need to
be considered to describe the magnetic response of the NPs system. We have
found no evidence of a spin-glasslike behavior in our Ni NP systems even when
dipolar interactions are clearly present.Comment: 7 pages, 5 figures, 3 table
A novel code for numerical 3-D MHD studies of CME expansion
A recent third-order, essentially non-oscillatory central scheme to advance the equations of single-fluid magnetohydrodynamics (MHD) in time has been implemented into a new numerical code. This code operates on a 3-D Cartesian, non-staggered grid, and is able to handle shock-like gradients without producing spurious oscillations. <br><br> To demonstrate the suitability of our code for the simulation of coronal mass ejections (CMEs) and similar heliospheric transients, we present selected results from test cases and perform studies of the solar wind expansion during phases of minimum solar activity. We can demonstrate convergence of the system into a stable Parker-like steady state for both hydrodynamic and MHD winds. The model is subsequently applied to expansion studies of CME-like plasma bubbles, and their evolution is monitored until a stationary state similar to the initial one is achieved. In spite of the model's (current) simplicity, we can confirm the CME's nearly self-similar evolution close to the Sun, thus highlighting the importance of detailed modelling especially at small heliospheric radii. <br><br> Additionally, alternative methods to implement boundary conditions at the coronal base, as well as strategies to ensure a solenoidal magnetic field, are discussed and evaluated
Random walks in a random environment on a strip: a renormalization group approach
We present a real space renormalization group scheme for the problem of
random walks in a random environment on a strip, which includes one-dimensional
random walk in random environment with bounded non-nearest-neighbor jumps. We
show that the model renormalizes to an effective one-dimensional random walk
problem with nearest-neighbor jumps and conclude that Sinai scaling is valid in
the recurrent case, while in the sub-linear transient phase, the displacement
grows as a power of the time.Comment: 9 page
Anomalous diffusion in disordered multi-channel systems
We study diffusion of a particle in a system composed of K parallel channels,
where the transition rates within the channels are quenched random variables
whereas the inter-channel transition rate v is homogeneous. A variant of the
strong disorder renormalization group method and Monte Carlo simulations are
used. Generally, we observe anomalous diffusion, where the average distance
travelled by the particle, []_{av}, has a power-law time-dependence
[]_{av} ~ t^{\mu_K(v)}, with a diffusion exponent 0 \le \mu_K(v) \le 1.
In the presence of left-right symmetry of the distribution of random rates, the
recurrent point of the multi-channel system is independent of K, and the
diffusion exponent is found to increase with K and decrease with v. In the
absence of this symmetry, the recurrent point may be shifted with K and the
current can be reversed by varying the lane change rate v.Comment: 16 pages, 7 figure
A Generalized Diffusion Tensor for Fully Anisotropic Diffusion of Energetic Particles in the Heliospheric Magnetic Field
The spatial diffusion of cosmic rays in turbulent magnetic fields can, in the
most general case, be fully anisotropic, i.e. one has to distinguish three
diffusion axes in a local, field-aligned frame. We reexamine the transformation
for the diffusion tensor from this local to a global frame, in which the Parker
transport equation for energetic particles is usually formulated and solved.
Particularly, we generalize the transformation formulas to allow for an
explicit choice of two principal local perpendicular diffusion axes. This
generalization includes the 'traditional' diffusion tensor in the special case
of isotropic perpendicular diffusion. For the local frame, we motivate the
choice of the Frenet-Serret trihedron which is related to the intrinsic
magnetic field geometry. We directly compare the old and the new tensor
elements for two heliospheric magnetic field configurations, namely the hybrid
Fisk and the Parker field. Subsequently, we examine the significance of the
different formulations for the diffusion tensor in a standard 3D model for the
modulation of galactic protons. For this we utilize a numerical code to
evaluate a system of stochastic differential equations equivalent to the Parker
transport equation and present the resulting modulated spectra. The computed
differential fluxes based on the new tensor formulation deviate from those
obtained with the 'traditional' one (only valid for isotropic perpendicular
diffusion) by up to 60% for energies below a few hundred MeV depending on
heliocentric distance.Comment: 8 pages, 6 figures, accepted in Ap
- âŠ