751 research outputs found

    On the entropy of plasmas described with regularized Îș\kappa-distributions

    Full text link
    In classical thermodynamics the entropy is an extensive quantity, i.e.\ the sum of the entropies of two subsystems in equilibrium with each other is equal to the entropy of the full system consisting of the two subsystems. The extensitivity of entropy has been questioned in the context of a theoretical foundation for the so-called Îș\kappa-distributions, which describe plasma constituents with power-law velocity distributions. We demonstrate here, by employing the recently introduced {\it regularized Îș\kappa-distributions}, that entropy can be defined as an extensive quantity even for such power-law-like distributions that truncate exponentially.Comment: Preprint accepted for publication in Phys. Rev.

    MHD Simulation of the Inner-Heliospheric Magnetic Field

    Full text link
    Maps of the radial magnetic field at a heliocentric distance of ten solar radii are used as boundary conditions in the MHD code CRONOS to simulate a 3D inner-heliospheric solar wind emanating from the rotating Sun out to 1 AU. The input data for the magnetic field are the result of solar surface flux transport modelling using observational data of sunspot groups coupled with a current sheet source surface model. Amongst several advancements, this allows for higher angular resolution than that of comparable observational data from synoptic magnetograms. The required initial conditions for the other MHD quantities are obtained following an empirical approach using an inverse relation between flux tube expansion and radial solar wind speed. The computations are performed for representative solar minimum and maximum conditions, and the corresponding state of the solar wind up to the Earths orbit is obtained. After a successful comparison of the latter with observational data, they can be used to drive outer-heliospheric models.Comment: for associated wmv movie files accompanying Figure 7, see http://www.tp4.rub.de/~tow/max.wmv and http://www.tp4.rub.de/~tow/min.wm

    Clustering of passive impurities in MHD turbulence

    Full text link
    The transport of heavy, neutral or charged, point-like particles by incompressible, resistive magnetohydrodynamic (MHD) turbulence is investigated by means of high-resolution numerical simulations. The spatial distribution of such impurities is observed to display strong deviations from homogeneity, both at dissipative and inertial range scales. Neutral particles tend to cluster in the vicinity of coherent vortex sheets due to their viscous drag with the flow, leading to the simultaneous presence of very concentrated and almost empty regions. The signature of clustering is different for charged particles. These exhibit in addition to the drag the Lorentz-force. The regions of spatial inhomogeneities change due to attractive and repulsive vortex sheets. While small charges increase clustering, larger charges have a reverse effect.Comment: 9 pages, 13 figure

    Role of dipolar interactions in a system of Ni nanoparticles studied by magnetic susceptibility measurements

    Get PDF
    The role of dipolar interactions among Ni nanoparticles (NP) embedded in an amorphous SiO2/C matrix with different concentrations has been studied performing ac magnetic susceptibility Chi_ac measurements. For very diluted samples, with Ni concentrations < 4 wt % Ni or very weak dipolar interactions, the data are well described by the Neel-Arrhenius law. Increasing Ni concentration to values up to 12.8 wt % Ni results in changes in the Neel-Arrhenius behavior, the dipolar interactions become important, and need to be considered to describe the magnetic response of the NPs system. We have found no evidence of a spin-glasslike behavior in our Ni NP systems even when dipolar interactions are clearly present.Comment: 7 pages, 5 figures, 3 table

    A novel code for numerical 3-D MHD studies of CME expansion

    Get PDF
    A recent third-order, essentially non-oscillatory central scheme to advance the equations of single-fluid magnetohydrodynamics (MHD) in time has been implemented into a new numerical code. This code operates on a 3-D Cartesian, non-staggered grid, and is able to handle shock-like gradients without producing spurious oscillations. &lt;br&gt;&lt;br&gt; To demonstrate the suitability of our code for the simulation of coronal mass ejections (CMEs) and similar heliospheric transients, we present selected results from test cases and perform studies of the solar wind expansion during phases of minimum solar activity. We can demonstrate convergence of the system into a stable Parker-like steady state for both hydrodynamic and MHD winds. The model is subsequently applied to expansion studies of CME-like plasma bubbles, and their evolution is monitored until a stationary state similar to the initial one is achieved. In spite of the model&apos;s (current) simplicity, we can confirm the CME&apos;s nearly self-similar evolution close to the Sun, thus highlighting the importance of detailed modelling especially at small heliospheric radii. &lt;br&gt;&lt;br&gt; Additionally, alternative methods to implement boundary conditions at the coronal base, as well as strategies to ensure a solenoidal magnetic field, are discussed and evaluated

    Random walks in a random environment on a strip: a renormalization group approach

    Full text link
    We present a real space renormalization group scheme for the problem of random walks in a random environment on a strip, which includes one-dimensional random walk in random environment with bounded non-nearest-neighbor jumps. We show that the model renormalizes to an effective one-dimensional random walk problem with nearest-neighbor jumps and conclude that Sinai scaling is valid in the recurrent case, while in the sub-linear transient phase, the displacement grows as a power of the time.Comment: 9 page

    Anomalous diffusion in disordered multi-channel systems

    Full text link
    We study diffusion of a particle in a system composed of K parallel channels, where the transition rates within the channels are quenched random variables whereas the inter-channel transition rate v is homogeneous. A variant of the strong disorder renormalization group method and Monte Carlo simulations are used. Generally, we observe anomalous diffusion, where the average distance travelled by the particle, []_{av}, has a power-law time-dependence []_{av} ~ t^{\mu_K(v)}, with a diffusion exponent 0 \le \mu_K(v) \le 1. In the presence of left-right symmetry of the distribution of random rates, the recurrent point of the multi-channel system is independent of K, and the diffusion exponent is found to increase with K and decrease with v. In the absence of this symmetry, the recurrent point may be shifted with K and the current can be reversed by varying the lane change rate v.Comment: 16 pages, 7 figure

    A Generalized Diffusion Tensor for Fully Anisotropic Diffusion of Energetic Particles in the Heliospheric Magnetic Field

    Full text link
    The spatial diffusion of cosmic rays in turbulent magnetic fields can, in the most general case, be fully anisotropic, i.e. one has to distinguish three diffusion axes in a local, field-aligned frame. We reexamine the transformation for the diffusion tensor from this local to a global frame, in which the Parker transport equation for energetic particles is usually formulated and solved. Particularly, we generalize the transformation formulas to allow for an explicit choice of two principal local perpendicular diffusion axes. This generalization includes the 'traditional' diffusion tensor in the special case of isotropic perpendicular diffusion. For the local frame, we motivate the choice of the Frenet-Serret trihedron which is related to the intrinsic magnetic field geometry. We directly compare the old and the new tensor elements for two heliospheric magnetic field configurations, namely the hybrid Fisk and the Parker field. Subsequently, we examine the significance of the different formulations for the diffusion tensor in a standard 3D model for the modulation of galactic protons. For this we utilize a numerical code to evaluate a system of stochastic differential equations equivalent to the Parker transport equation and present the resulting modulated spectra. The computed differential fluxes based on the new tensor formulation deviate from those obtained with the 'traditional' one (only valid for isotropic perpendicular diffusion) by up to 60% for energies below a few hundred MeV depending on heliocentric distance.Comment: 8 pages, 6 figures, accepted in Ap
    • 

    corecore