725 research outputs found
Orion Spacecraft MMOD Protection Design and Assessment
The Orion spacecraft will replace the Space Shuttle Orbiter for American and international partner access to the International Space Station by 2015 and, afterwards, for access to the moon for initial sorties and later for extended outpost visits as part of the Constellation Exploration Initiative. This work describes some of the efforts being undertaken to ensure that the Constellation Program, Orion Crew Exploration Vehicle design will meet or exceed the stringent micrometeoroid and orbital debris (MMOD) requirements set out by NASA when exposed to the environments encountered with these missions. This paper will provide a brief overview of the approaches being used to provide MMOD protection to the Orion vehicle and to assess the spacecraft for compliance to the Constellation Program s MMOD requirements
Reference Measurements of the Longitudinal Impedance in the CERN SPS
First reference measurements of the longitudinal impedance were made with beam in the SPS machine in 1999 to quantify the results of the impedance reduction programme, completed in 2001. The 2001 data showed that the low-frequency inductive impedance had been reduced by a factor 2.5 and that bunch lengthening due to the microwave instability was absent up to the ultimate LHC bunch intensity. Measurements of the quadrupole frequency shift with intensity in the following years suggest a significant increase in impedance (which nevertheless remains below the 1999 level) due to the installation of eight extraction kickers for beam transfer to the LHC. The experimental results are compared with expectations based on the known longitudinal impedance of the SPS
Curvature-direction measures of self-similar sets
We obtain fractal Lipschitz-Killing curvature-direction measures for a large
class of self-similar sets F in R^d. Such measures jointly describe the
distribution of normal vectors and localize curvature by analogues of the
higher order mean curvatures of differentiable submanifolds. They decouple as
independent products of the unit Hausdorff measure on F and a self-similar
fibre measure on the sphere, which can be computed by an integral formula. The
corresponding local density approach uses an ergodic dynamical system formed by
extending the code space shift by a subgroup of the orthogonal group. We then
give a remarkably simple proof for the resulting measure version under minimal
assumptions.Comment: 17 pages, 2 figures. Update for author's name chang
Progress with the Upgrade of the SPS for the HL-LHC Era
The demanding beam performance requirements of the High Luminosity (HL-) LHC
project translate into a set of requirements and upgrade paths for the LHC
injector complex. In this paper the performance requirements for the SPS and
the known limitations are reviewed in the light of the 2012 operational
experience. The various SPS upgrades in progress and still under consideration
are described, in addition to the machine studies and simulations performed in
2012. The expected machine performance reach is estimated on the basis of the
present knowledge, and the remaining decisions that still need to be made
concerning upgrade options are detailed.Comment: 3 p. Presented at 4th International Particle Accelerator Conference
(IPAC 2013
Operational procedures to obtain high beam-beam tune shifts in LEP pretzel operation
During the running period 1994 the luminosity of LEP has been improved without colliding higher bunch currents. This paper describes the main procedures used by the operations group for luminosity optimization. Separator scans in the vertical plane and orbit interpolations in the horizontal plane are used to adjust settings for electrostatic separators in order to ensure head-on collisions. The closed orbit is corrected towards a reference orbit (called "golden" orbit) which has been found empirically to produce good luminosity. The settings of the skew quadrupoles for coupling compensation is obtained by measuring the closest tune approach of the horizontal and vertical betatron tunes
Identification of target-specific bioisosteric fragments from ligand-protein crystallographic data
Bioisosteres are functional groups or atoms that are structurally different but that can form similar intermolecular interactions. Potential bioisosteres were identified here from analysing the X-ray crystallographic structures for sets of different ligands complexed with a fixed protein. The protein was used to align the ligands with each other, and then pairs of ligands compared to identify substructural features with high volume overlap that occurred in approximately the same region of geometric space. The resulting pairs of substructural features can suggest potential bioisosteric replacements for use in lead-optimisation studies. Experiments with 12 sets of ligand-protein complexes from the Protein Data Bank demonstrate the effectiveness of the procedure
Proton acceleration by irradiation of isolated spheres with an intense laser pulse
We report on experiments irradiating isolated plastic spheres with a peak laser intensity of 2-3 x 10(20) W cm(-2). With a laser focal spot size of 10 mu m full width half maximum (FWHM) the sphere diameter was varied between 520 nm and 19.3 mu m. Maximum proton energies of similar to 25 MeV are achieved for targets matching the focal spot size of 10 mu m in diameter or being slightly smaller. For smaller spheres the kinetic energy distributions of protons become nonmonotonic, indicating a change in the accelerating mechanism from ambipolar expansion towards a regime dominated by effects caused by Coulomb repulsion of ions. The energy conversion efficiency from laser energy to proton kinetic energy is optimized when the target diameter matches the laser focal spot size with efficiencies reaching the percent level. The change of proton acceleration efficiency with target size can be attributed to the reduced cross-sectional overlap of subfocus targets with the laser. Reported experimental observations are in line with 3D3V particle in cell simulations. They make use of well-defined targets and point out pathways for future applications and experiments.DFG via the Cluster of Excellence Munich-Centre for Advanced Photonics (MAP) Transregio SFB TR18NNSA DE-NA0002008Super-MUC pr48meIvo CermakCGC Instruments in design and realization of the Paul trap systemIMPRS-APSLMUexcellent Junior Research FundDAAD|ToIFEEuropean Union's Horizon research and innovation programme 633053Physic
LEP1 operation, 1989-1995
In October 1995, the last run foreseen for dedicated Z production at CERN was performed in LEP, thereby bringing to a close the first phase of operation of the machine. A total luminosity of 200 pb-1 has been delivered to each of the four experiments, which together have recorded the decays of over 20 millions Zs. Machine performance has increased to the extent that a good weekend in 1995 saw as much luminosity delivered as in the whole of 1989. This improvement has been made possible by a combination of several things. Over and above general operational expertise, special care went into the treatment and stabilisation of the closed orbit in order to obtain reproducible high performances with vertical beam-beam tune shifts exceeding values of xy = 0.04. Both Pretzel and Bunch Train schemes have been introduced to double the number of bunches, and high-tune optics have been developed to produce low transverse emittances which allow operation at the beam-beam limit throughout physics runs. Included in the integrated luminosity are data taken off the peak of the Z resonance, to allow precise determination of the mass and width of this particle. Accurate measurements of the beam energy during these runs have brought to the fore some unusual effects
- …