533 research outputs found

    A New Advanced Backcross Tomato Population Enables High Resolution Leaf QTL Mapping and Gene Identification.

    Get PDF
    Quantitative Trait Loci (QTL) mapping is a powerful technique for dissecting the genetic basis of traits and species differences. Established tomato mapping populations between domesticated tomato (Solanum lycopersicum) and its more distant interfertile relatives typically follow a near isogenic line (NIL) design, such as the S. pennellii Introgression Line (IL) population, with a single wild introgression per line in an otherwise domesticated genetic background. Here, we report on a new advanced backcross QTL mapping resource for tomato, derived from a cross between the M82 tomato cultivar and S. pennellii This so-called Backcrossed Inbred Line (BIL) population is comprised of a mix of BC2 and BC3 lines, with domesticated tomato as the recurrent parent. The BIL population is complementary to the existing S. pennellii IL population, with which it shares parents. Using the BILs, we mapped traits for leaf complexity, leaflet shape, and flowering time. We demonstrate the utility of the BILs for fine-mapping QTL, particularly QTL initially mapped in the ILs, by fine-mapping several QTL to single or few candidate genes. Moreover, we confirm the value of a backcrossed population with multiple introgressions per line, such as the BILs, for epistatic QTL mapping. Our work was further enabled by the development of our own statistical inference and visualization tools, namely a heterogeneous hidden Markov model for genotyping the lines, and by using state-of-the-art sparse regression techniques for QTL mapping

    Excitation and relaxation in atom-cluster collisions

    Get PDF
    Electronic and vibrational degrees of freedom in atom-cluster collisions are treated simultaneously and self-consistently by combining time-dependent density functional theory with classical molecular dynamics. The gradual change of the excitation mechanisms (electronic and vibrational) as well as the related relaxation phenomena (phase transitions and fragmentation) are studied in a common framework as a function of the impact energy (eV...MeV). Cluster "transparency" characterized by practically undisturbed atom-cluster penetration is predicted to be an important reaction mechanism within a particular window of impact energies.Comment: RevTeX (4 pages, 4 figures included with epsf

    The leucine-rich repeat receptor kinase QSK1 is a novel regulator of PRR-RBOHD complex and is employed by the bacterial effector HopF2Pto_{Pto} to modulate plant immunity

    Get PDF
    Plants detect pathogens using cell-surface pattern recognition receptors (PRRs) like EFR and FLS2, which recognize bacterial EF-Tu and flagellin, respectively. These PRRs, belonging to the leucine-rich repeat receptor kinase (LRR-RK) family, activate the production of reactive oxygen species via the NADPH oxidase RBOHD. The PRR-RBOHD complex is tightly regulated to prevent unwarranted or exaggerated immune responses. However, certain pathogenic effectors can subvert these regulatory mechanisms, thereby suppressing plant immunity. To elucidate the intricate dynamics of the PRR-RBOHD complex, we conducted a comparative co-immunoprecipitation analysis using EFR, FLS2, and RBOHD. We identified QSK1, an LRR-RK, as a novel component of the PRR-RBOHD complex. QSK1 functions as a negative regulator of PRR-triggered immunity (PTI) by downregulating the abundance of FLS2 and EFR. QSK1 is targeted by the bacterial effector HopF2Pto_{Pto}, a mono-ADP ribosyltransferase, resulting in the reduction of FLS2 and EFR levels through both transcriptional and transcription-independent pathways, thereby inhibiting PTI. Furthermore, HopF2Pto_{Pto} reduces transcript levels of PROSCOOP genes encoding important stress-regulated phytocytokines and their receptor MIK2. Importantly, HopF2Pto requires QSK1 for its accumulation and virulence functions within plants. In summary, our results provide novel insights into the mechanism by which HopF2Pto_{Pto} employs QSK1 to desensitize plants to pathogen attack. One Sentence Summary: QSK1, a novel component in the plant immune receptor complex, downregulates these receptors and phytocytokines, and is exploited by bacterial effector HopF2Pto_{Pto} to desensitize plants to pathogen attack

    Skin color-specific and spectrally-selective naked-eye dosimetry of UVA, B and C radiations

    Get PDF
    Spectrally–selective monitoring of ultraviolet radiations (UVR) is of paramount importance across diverse fields, including effective monitoring of excessive solar exposure. Current UV sensors cannot differentiate between UVA, B, and C, each of which has a remarkably different impact on human health. Here we show spectrally selective colorimetric monitoring of UVR by developing a photoelectrochromic ink that consists of a multi-redox polyoxometalate and an e− donor. We combine this ink with simple components such as filter paper and transparency sheets to fabricate low-cost sensors that provide naked-eye monitoring of UVR, even at low doses typically encountered during solar exposure. Importantly, the diverse UV tolerance of different skin colors demands personalized sensors. In this spirit, we demonstrate the customized design of robust real-time solar UV dosimeters to meet the specific need of different skin phototypes. These spectrally–selective UV sensors offer remarkable potential in managing the impact of UVR in our day-to-day life

    Studies on two polyherbal formulations (ZPTO and ZTO) for comparison of their antidyslipidemic, antihypertensive and endothelial modulating activities

    Get PDF
    Background Cardiovascular disorders (CVDs) are the leading cause of disease burden worldwide. Apart from available synthetic drugs used in CVDs, there are many herbal formulations including POL-10 (containing 10 herbs), which have been shown to be effective in animal studies but POL-10 was found to cause tachycardia in rodents as its side effect. This study was designed to modify the composition of POL-10 for better efficacy and/or safety profile in CVDs. Methods To assess the antidyslipidemic, antihypertensive and endothelial modulatory properties of two herbal formulations, (ZPTO and ZTO) containing Z: Zingiber officinalis, P: Piper nigrum, T: Terminalia belerica and O: Orchis mascula, different animal models including, tyloxapol and high fat diet-induced dyslipidemia and spontaneously hypertensive rats (SHR) were used. Effect on endothelial function was studied using isolated tissue bath set up coupled with PowerLab data acquisition system. The antioxidant activity was carried out using DPPH radical-scavenging assay. Results Based on preliminary screening of the ingredients of POL-10 in tyloxapol-induced hyperlipidemic rats, ZPTO and ZTO containing four active ingredients namely; Z, P, T and O were identified for further studies and comparison. In tyloxapol-induced hyperlipidemic rats, both ZPTO and ZTO caused significant reduction in serum triglyceride (TG) and total cholesterol (TC). In high fat diet-fed rats, ZPTO decreased TC, low-density lipoproteins cholesterol (LDL-C) and atherogenic index (AI). ZTO also showed similar effects to those of ZPTO with additional merits being more effective in reducing AI, body weight and more importantly raising high-density lipoproteins. In SHR, both formulations markedly reduced systolic blood pressure, AI and TG levels, ZTO being more potent in reversing endothelial dysfunction while was devoid of cardiac stimulatory effect. In addition, ZTO also reduced LDL-C and improved glucose levels in SHR. In DPPH radical-scavenging activity test, ZTO was also more potent than ZPTO. Conclusion The modified formulation, ZTO was not only found more effective in correcting cardiovascular abnormalities than ZPTO or POL-10 but also it was free from tachycardiac side-effect, which might be observed because of the presence of Piper nigrum in ZPTO

    An overview of the cutaneous porphyrias

    Get PDF
    This is an overview of the cutaneous porphyrias. It is a narrative review based on the published literature and my personal experience; it is not based on a formal systematic search of the literature. The cutaneous porphyrias are a diverse group of conditions due to inherited or acquired enzyme defects in the porphyrin–haem biosynthetic pathway. All the cutaneous porphyrias can have (either as a consequence of the porphyria or as part of the cause of the porphyria) involvement of other organs as well as the skin. The single commonest cutaneous porphyria in most parts of the world is acquired porphyria cutanea tarda, which is usually due to chronic liver disease and liver iron overload. The next most common cutaneous porphyria, erythropoietic protoporphyria, is an inherited disorder in which the accumulation of bile-excreted protoporphyrin can cause gallstones and, rarely, liver disease. Some of the porphyrias that cause blistering (usually bullae) and fragility (clinically and histologically identical to porphyria cutanea tarda) can also be associated with acute neurovisceral porphyria attacks, particularly variegate porphyria and hereditary coproporphyria. Management of porphyria cutanea tarda mainly consists of visible-light photoprotection measures while awaiting the effects of treating the underlying liver disease (if possible) and treatments to reduce serum iron and porphyrin levels. In erythropoietic protoporphyria, the underlying cause can be resolved only with a bone marrow transplant (which is rarely justifiable in this condition), so management consists particularly of visible-light photoprotection and, in some countries, narrowband ultraviolet B phototherapy. Afamelanotide is a promising and newly available treatment for erythropoietic protoporphyria and has been approved in Europe since 2014
    corecore