2,135 research outputs found
TFD Approach to Bosonic Strings and -branes
In this work we explain the construction of the thermal vacuum for the
bosonic string, as well that of the thermal boundary state interpreted as a
-brane at finite temperature. In both case we calculate the respective
entropy using the entropy operator of the Thermo Field Dynamics Theory. We show
that the contribution of the thermal string entropy is explicitly present in
the -brane entropy. Furthermore, we show that the Thermo Field approach
is suitable to introduce temperature in boundary states.Comment: 6 pages, revtex, typos are corrected. Prepared for the Second
Londrina Winter School-Mathematical Methods in Physics, August 25-30, 2002,
Londrina-Pr, Brazil. To appear in a special issue of IJMP
Quantum Electrodynamics in Two-Dimensions at Finite Temperature. Thermofield Bosonization Approach
The Schwinger model at finite temperature is analyzed using the Thermofield
Dynamics formalism. The operator solution due to Lowenstein and Swieca is
generalized to the case of finite temperature within the thermofield
bosonization approach. The general properties of the statistical-mechanical
ensemble averages of observables in the Hilbert subspace of gauge invariant
thermal states are discussed. The bare charge and chirality of the Fermi
thermofields are screened, giving rise to an infinite number of mutually
orthogonal thermal ground states. One consequence of the bare charge and
chirality selection rule at finite temperature is that there are innumerably
many thermal vacuum states with the same total charge and chirality of the
doubled system. The fermion charge and chirality selection rules at finite
temperature turn out to imply the existence of a family of thermal theta vacua
states parametrized with the same number of parameters as in zero temperature
case. We compute the thermal theta-vacuum expectation value of the mass
operator and show that the analytic expression of the chiral condensate for any
temperature is easily obtained within this approach, as well as, the
corresponding high-temperature behavior
Quasinormal modes for the charged Vaidya metric
The scalar wave equation is considered in the background of a charged Vaidya
metric in double null coordinates describing a non-stationary charged
black hole with varying mass and charge . The resulting
time-dependent quasinormal modes are presented and analyzed. We show, in
particular, that it is possible to identify some signatures in the quasinormal
frequencies from the creation of a naked singularity.Comment: 4 pages. Prepared for the proceedings of the Spanish Relativity
meeting (ERE2010), Granada, Spain, September 6-10, 201
Quasinormal modes of d-dimensional spherical black holes with a near extreme cosmological constant
We derive an expression for the quasinormal modes of scalar perturbations in
near extreme d-dimensional Schwarzschild-de Sitter and Reissner-Nordstrom-de
Sitter black holes. We show that, in the near extreme limit, the dynamics of
the scalar field is characterized by a Poschl-Teller effective potential. The
results are qualitatively independent of the spacetime dimension and field
mass.Comment: 5 pages, REVTeX4, version to be published in Physical Review
Evaluation of Antimicrobial Activity of Moringa Oleifera Leaf Extracts Against Pathogenic Bacteria Isolated From Urinary Tract Infected Patients
Antibiotic resistance has increased substantially in recent years and is posing an ever-increasing therapeutic problem. One of the methods to reduce the resistance to antibiotics is by using antibiotic resistance inhibitors from plants. The aim of this study is to evaluate the antibacterial properties of aqueous, petroleum ether and methanolic leaf extracts of Moringa oleifera plant against pathogenic bacteria isolated from urinary tract infected patients and five standard strains of American type culture collection. The antibacterial activity of Moringa oleifera leaf extracts was determined in vitro, using Cup plate method, and compared with sensitivity testing of some antibiotic agents using disc diffusion method. The results obtained showed that all concentration of methanolic extracts of Moringa oleifera had high inhibitory effects on S. aureus ATCC25923, K. pneumoniae ATCC35637 standard strains and the S. aureus, S. saprophyticus and E.coli isolated from UTI. The three concentration of water extract had inhibitory effects only on Proteus vulgaris NCTC8196 strain. The petroleum ether extracts showed no inhibitory activity on any organism. These results were compared with standard antibiotics Amikacin, Ciprofloxacin, and Norfloxacin which showed moderate sensitivity against S. aureus and Amikacin was completely resistant to K. pneumoniae isolated from UTI. These results provide valuable information that Moringa oleifera hold great promise as highly effective antibacterial agents
Field propagation in de Sitter black holes
We present an exhaustive analysis of scalar, electromagnetic and
gravitational perturbations in the background of Schwarzchild-de Sitter and
Reissner-Nordstrom-de Sitter spacetimes. The field propagation is considered by
means of a semi-analytical (WKB) approach and two numerical schemes: the
characteristic and general initial value integrations. The results are compared
near the extreme cosmological constant regime, where analytical results are
presented. A unifying picture is established for the dynamics of different spin
fields.Comment: 15 pages, 16 figures, published versio
Hamiltonian Embedding of SU(2) Higgs Model in the Unitary Gauge
Following systematically the generalized Hamiltonian approach of Batalin,
Fradkin and Tyutin (BFT), we embed the second-class non-abelian SU(2) Higgs
model in the unitary gauge into a gauge invariant theory. The strongly
involutive Hamiltonian and constraints are obtained as an infinite power series
in the auxiliary fields. Furthermore, comparing these results with those
obtained from the gauged second class Lagrangian, we arrive at a simple
interpretation for the first class Hamiltonian, constraints and observables.Comment: 13 pages, Latex, no figure
Renormalization of QCD_2
The low energy infrared scaling of the multi-color 2-dimensional quantum
chromodynamics is determined in the framework of its bosonized model by using
the functional renormalization group method with gliding sharp cut-off k in
momentum space in the local potential approximation. The model exhibits a
single phase with a superuniversal effective potential.Comment: 15 pages, 3 figures, final versio
Quasi-normal modes of the scalar hairy black hole
We calculate QNMs of the scalar hairy black hole in the AdS background using
Horowitz-Hubeny method for the potential that is not known in analytical form.
For some black hole parameters we found pure imaginary frequencies. Increasing
of the scalar field mass does not cause the imaginary part to vanish, it
reaches some minimum and then increases, thus in the case under consideration
the infinitely long living modes (quasi-resonances) do not appear.Comment: 17 pages, 17 figures, LaTe
Bi-partite entanglement entropy in massive (1+1)-dimensional quantum field theories
This paper is a review of the main results obtained in a series of papers involving the present authors and their collaborator J L Cardy over the last 2 years. In our work, we have developed and applied a new approach for the computation of the bi-partite entanglement entropy in massive (1+1)-dimensional quantum field theories. In most of our work we have also considered these theories to be integrable. Our approach combines two main ingredients: the 'replica trick' and form factors for integrable models and more generally for massive quantum field theory. Our basic idea for combining fruitfully these two ingredients is that of the branch-point twist field. By the replica trick, we obtained an alternative way of expressing the entanglement entropy as a function of the correlation functions of branch-point twist fields. On the other hand, a generalization of the form factor program has allowed us to study, and in integrable cases to obtain exact expressions for, form factors of such twist fields. By the usual decomposition of correlation functions in an infinite series involving form factors, we obtained exact results for the infrared behaviours of the bi-partite entanglement entropy, and studied both its infrared and ultraviolet behaviours for different kinds of models: with and without boundaries and backscattering, at and out of integrability
- …