70 research outputs found

    PND26 Estimated Costs of First-Year Monitoring and Administration of Multiple Sclerosis Therapies in the United States

    Get PDF

    Immunopotentiation of Trivalent Influenza Vaccine When Given with VAX102, a Recombinant Influenza M2e Vaccine Fused to the TLR5 Ligand Flagellin

    Get PDF
    BACKGROUND: Currently controversy exists about the immunogenicity of seasonal trivalent influenza vaccine in certain populations, especially the elderly. STF2.4×M2e (VAX102) is a recombinant fusion protein that links four copies of the ectodomain of influenza virus matrix protein 2 (M2e) antigen to Salmonella typhimurium flagellin, a TLR5 ligand. The objectives of this study were to assess the feasibility of giving VAX102 and TIV in combination in an effort to achieve greater immunogenicity and to provide cross-protection. METHODOLOGY/PRINCIPAL FINDINGS: Eighty healthy subjects, 18-49 years old, were enrolled in May and June 2009 in a double-blind, randomized, controlled trial at two clinical sites. Subjects were randomized to receive either TIV + VAX102 or TIV + placebo. Both arms tolerated the vaccines. Pain at the injection site was more severe with TIV + VAX102. Two weeks after immunization the HAI responses to the H1 and H3 antigens of TIV were higher in those that received TIV + VAX102 than in TIV + placebo (309 vs 200 and 269 vs 185, respectively), although statistically non-significant. There was no difference in the HAI of the B antigen. In the TIV + VAX102 arm, the geometric mean M2e antibody concentration was 0.5 µg/ml and 73% seroconverted. CONCLUSIONS/SIGNIFICANCE: The combination of TIV + VAX102 has the potential to increase the immune response to the influenza A components of TIV and to provide M2e immunity which may protect against influenza A strains not contained in seasonal TIV. TRIAL REGISTRATION: ClinicalTrials.gov NCT00921973

    The beta2 integrin CD11c distinguishes a subset of cytotoxic pulmonary T cells with potent antiviral effects in vitro and in vivo

    Get PDF
    BACKGROUND: The integrin CD11c is known as a marker for dendritic cells and has recently been described on T cells following lymphotropic choriomeningitis virus infection, a systemic infection affecting a multitude of organs. Here, we characterise CD11c bearing T cells in a murine model of localised pulmonary infection with respiratory syncytial virus (RSV). METHODS: Mice were infected intranasally with RSV and expression of β2 integrins and T lymphocyte activation markers were monitored by flow cytometry. On day 8 post RSV infection CD11c(+ )CD8(+ )and CD11c(- )CD8(+ )T cells were assessed for cytokine production, cytotoxic activity and migration. Expression of CD11c mRNA in CD8(+ )T cells was assessed by quantitative PCR. RESULTS: Following RSV infection CD11c(+ )CD8(+ )T cells were detectable in the lung from day 4 onwards and accounted for 45.9 ± 4.8% of CD8(+ )T cells on day 8 post infection, while only few such cells were present in mediastinal lymph nodes, spleen and blood. While CD11c was virtually absent from CD8(+ )T cells in the absence of RSV infection, its mRNA was expressed in CD8(+ )T cells of both naïve and RSV infected mice. CD11c(+), but not CD11c(-), CD8(+ )T cells showed signs of recent activation, including up-regulation of CD11a and expression of CD11b and CD69 and were recruited preferentially to the lung. In addition, CD11c(+ )CD8(+ )T cells were the major subset responsible for IFNγ production, induction of target cell apoptosis in vitro and reduction of viral titres in vivo. CONCLUSION: CD11c is a useful marker for detection and isolation of pulmonary antiviral cytotoxic T cells following RSV infection. It identifies a subset of activated, virus-specific, cytotoxic T cells that exhibit potent antiviral effects in vivo

    Lipid Motif of a Bacterial Antigen Mediates Immune Responses via TLR2 Signaling

    Get PDF
    The cross-talk between the innate and the adaptive immune system is facilitated by the initial interaction of antigen with dendritic cells. As DCs express a large array of TLRs, evidence has accumulated that engagement of these molecules contributes to the activation of adaptive immunity. We have evaluated the immunostimulatory role of the highly-conserved outer membrane lipoprotein P6 from non-typeable Haemophilus influenzae (NTHI) to determine whether the presence of the lipid motif plays a critical role on its immunogenicity. We undertook a systematic analysis of the role that the lipid motif plays in the activation of DCs and the subsequent stimulation of antigen-specific T and B cells. To facilitate our studies, recombinant P6 protein that lacked the lipid motif was generated. Mice immunized with non-lipidated rP6 were unable to elicit high titers of anti-P6 Ig. Expression of the lipid motif on P6 was also required for proliferation and cytokine secretion by antigen-specific T cells. Upregulation of T cell costimulatory molecules was abrogated in DCs exposed to non-lipidated rP6 and in TLR2−/− DCs exposed to native P6, thereby resulting in diminished adaptive immune responses. Absence of either the lipid motif on the antigen or TLR2 expression resulted in diminished cytokine production from stimulated DCs. Collectively; our data suggest that the lipid motif of the lipoprotein antigen is essential for triggering TLR2 signaling and effective stimulation of APCs. Our studies establish the pivotal role of a bacterial lipid motif on activating both innate and adaptive immune responses to an otherwise poorly immunogenic protein antigen

    High Distribution of CD40 and TRAF2 in Th40 T Cell Rafts Leads to Preferential Survival of this Auto-Aggressive Population in Autoimmunity

    Get PDF
    CD40-CD154 interactions have proven critical in autoimmunity, with the identification of CD4(lo)CD40(+) T cells (Th40 cells) as harboring an autoaggressive T cell population shedding new insights into those disease processes. Th40 cells are present at contained levels in non-autoimmune individuals but are significantly expanded in autoimmunity. Th40 cells are necessary and sufficient in transferring type 1 diabetes in mouse models. However, little is known about CD40 signaling in T cells and whether there are differences in that signaling and subsequent outcome depending on disease conditions. When CD40 is engaged, CD40 and TNF-receptor associated factors, TRAFs, become associated with lipid raft microdomains. Dysregulation of T cell homeostasis is emerging as a major contributor to autoimmune disease and thwarted apoptosis is key in breaking homeostasis.Cells were sorted into CD4(hi) and CD4(lo) (Th40 cells) then treated and assayed either as whole or fractionated cell lysates. Protein expression was assayed by western blot and Nf-kappaB DNA-binding activity by electrophoretic mobility shifts. We demonstrate here that autoimmune NOD Th40 cells have drastically exaggerated expression of CD40 on a per-cell-basis compared to non-autoimmune BALB/c. Immediately ex-vivo, untreated Th40 cells from NOD mice have high levels of CD40 and TRAF2 associated with the raft microdomain while Th40 cells from NOR and BALB/c mice do not. CD40 engagement of Th40 cells induces Nf-kappaB DNA-binding activity and anti-apoptotic Bcl-X(L) expression in all three mouse strains. However, only in NOD Th40 cells is anti-apoptotic cFLIP(p43) induced which leads to preferential survival and proliferation. Importantly, CD40 engagement rescues NOD Th40 cells from Fas-induced death.CD40 may act as a switch between life and death promoting signals and NOD Th40 cells are poised for survival via this switch. This may explain how they expand in autoimmunity to thwart T cell homeostasis

    Adhesion Molecules Associated with Female Genital Tract Infection

    Get PDF
    Altres ajuts: Marie Curie Career Integration Grant i una beca Fundació Dexeus Salut de la DonaEfforts to develop vaccines that can elicit mucosal immune responses in the female genital tract against sexually transmitted infections have been hampered by an inability to measure immune responses in these tissues. The differential expression of adhesion molecules is known to confer site-dependent homing of circulating effector T cells to mucosal tissues. Specific homing molecules have been defined that can be measured in blood as surrogate markers of local immunity (e.g. α4β7 for gut). Here we analyzed the expression pattern of adhesion molecules by circulating effector T cells following mucosal infection of the female genital tract in mice and during a symptomatic episode of vaginosis in women. While CCR2, CCR5, CXCR6 and CD11c were preferentially expressed in a mouse model of Chlamydia infection, only CCR5 and CD11c were clearly expressed by effector T cells during bacterial vaginosis in women. Other homing molecules previously suggested as required for homing to the genital mucosa such as α4β1 and α4β7 were also differentially expressed in these patients. However, CD11c expression, an integrin chain rarely analyzed in the context of T cell immunity, was the most consistently elevated in all activated effector CD8+ T cell subsets analyzed. This molecule was also induced after systemic infection in mice, suggesting that CD11c is not exclusive of genital tract infection. Still, its increase in response to genital tract disorders may represent a novel surrogate marker of mucosal immunity in women, and warrants further exploration for diagnostic and therapeutic purposes

    Sublingual Immunization with M2-Based Vaccine Induces Broad Protective Immunity against Influenza

    Get PDF
    The ectodomain of matrix protein 2 (M2e) of influenza A virus is a rationale target antigen candidate for the development of a universal vaccine against influenza as M2e undergoes little sequence variation amongst human influenza A strains. Vaccine-induced M2e-specific antibodies (Abs) have been shown to display significant cross-protective activity in animal models. M2e-based vaccine constructs have been shown to be more protective when administered by the intranasal (i.n.) route than after parenteral injection. However, i.n. administration of vaccines poses rare but serious safety issues associated with retrograde passage of inhaled antigens and adjuvants through the olfactory epithelium. In this study, we examined whether the sublingual (s.l.) route could serve as a safe and effective alternative mucosal delivery route for administering a prototype M2e-based vaccine. The mechanism whereby s.l. immunization with M2e vaccine candidate induces broad protection against infection with different influenza virus subtypes was explored.A recombinant M2 protein with three tandem copies of the M2e (3M2eC) was expressed in Escherichia coli. Parenteral immunizations of mice with 3M2eC induced high levels of M2e-specific serum Abs but failed to provide complete protection against lethal challenge with influenza virus. In contrast, s.l. immunization with 3M2eC was superior for inducing protection in mice. In the latter animals, protection was associated with specific Ab responses in the lungs.The results demonstrate that s.l. immunization with 3M2eC vaccine induced airway mucosal immune responses along with broad cross-protective immunity to influenza. These findings may contribute to the understanding of the M2-based vaccine approach to control epidemic and pandemic influenza infections
    corecore