1 research outputs found

    Time-dependent quantum transport in a resonant tunnel junction coupled to a nanomechanical oscillator

    Full text link
    We present a theoretical study of time-dependent quantum transport in a resonant tunnel junction coupled to a nanomechanical oscillator within the non-equilibrium Green's function technique. An arbitrary voltage is applied to the tunnel junction and electrons in the leads are considered to be at zero temperature. The transient and the steady state behavior of the system is considered here in order to explore the quantum dynamics of the oscillator as a function of time. The properties of the phonon distribution of the nanomechnical oscillator strongly coupled to the electrons on the dot are investigated using a non-perturbative approach. We consider both the energy transferred from the electrons to the oscillator and the Fano factor as a function of time. We discuss the quantum dynamics of the nanomechanical oscillator in terms of pure and mixed states. We have found a significant difference between a quantum and a classical oscillator. In particular, the energy of a classical oscillator will always be dissipated by the electrons whereas the quantum oscillator remains in an excited state. This will provide useful insight for the design of experiments aimed at studying the quantum behavior of an oscillator.Comment: 24 pages, 10 figure
    corecore