16 research outputs found

    ACHIEVING HIGH-RESOLUTION VIDEO USING SCALABLE CAPTURE, PROCESSING, AND DISPLAY

    No full text
    Abstract: New video applications are becoming possible with the advent of several enabling technologies: multicamera capture, increased PC bus bandwidth, multicore processors, and advanced graphics cards. We present a commercially-available multicamera system and a software architecture that, coupled with industry trends, create a situation in which video capture, processing, and display are all increasingly scalable in the number of video streams. Leveraging this end-to-end scalability, we introduce a novel method of generating high-resolution, panoramic video. While traditional point-based mosaicking requires significant image overlap, we gain significant advantage by calibrating using shared observations of lines to constrain the placement of images. Two non-overlapping cameras do not share any scene points; however, seeing different parts of the same line does constrain their spatial alignment. Using lines allows us to reduce overlap in the source images, thereby maximizing final mosaic resolution. We show results of synthesizing a 6 megapixel video camera from 18 smaller cameras, all on a single PC and at 30 Hz.
    corecore