66,831 research outputs found

    Physical constraints on interacting dark energy models

    Full text link
    Physical limits on the equation-of-state (EoS) parameter of a dark energy component non-minimally coupled with the dark matter field are examined in light of the second law of thermodynamics and the positiveness of entropy. Such constraints are combined with observational data sets of type Ia supernovae, baryon acoustic oscillations and the angular acoustic scale of the cosmic microwave background to impose restrictions on the behaviour of the dark matter/dark energy interaction. Considering two EoS parameterisations of the type w=w0+waζ(z)w = w_0 + w_a\zeta(z), we derive a general expression for the evolution of the dark energy density and show that the combination of thermodynamic limits and observational data provide tight bounds on the w0−waw_0 - w_a parameter space.Comment: 7 pages, 4 figures. Accepted for publication in European Physical Journal

    Metallic Continuum Quantum Ferromagnets at Finite Temperature

    Full text link
    We study via renormalization group (RG) and large N methods the problem of continuum SU(N) quantum Heisenberg ferromagnets (QHF) coupled to gapless electrons. We establish the phase diagram of the dissipative problem and investigate the changes in the Curie temperature, magnetization, and magnetic correlation length due to dissipation and both thermal and quantum fluctuations. We show that the interplay between the topological term (Berry's phase) and dissipation leads to non-trivial effects for the finite temperature critical behavior.Comment: Corrected typos, new discussion of T=0 results, to appear in Europhys. Let

    A Time-Periodic Lyapunov Approach for Motion Planning of Controllable Driftless Systems on SU(n)

    Full text link
    For a right-invariant and controllable driftless system on SU(n), we consider a time-periodic reference trajectory along which the linearized control system generates su(n): such trajectories always exist and constitute the basic ingredient of Coron's Return Method. The open-loop controls that we propose, which rely on a left-invariant tracking error dynamics and on a fidelity-like Lyapunov function, are determined from a finite number of left-translations of the tracking error and they assure global asymptotic convergence towards the periodic reference trajectory. The role of these translations is to avoid being trapped in the critical region of this Lyapunov-like function. The convergence proof relies on a periodic version of LaSalle's invariance principle and the control values are determined by numerical integration of the dynamics of the system. Simulations illustrate the obtained controls for n=4n=4 and the generation of the C--NOT quantum gate.Comment: Submitte

    Semi-Automated SVG Programming via Direct Manipulation

    Full text link
    Direct manipulation interfaces provide intuitive and interactive features to a broad range of users, but they often exhibit two limitations: the built-in features cannot possibly cover all use cases, and the internal representation of the content is not readily exposed. We believe that if direct manipulation interfaces were to (a) use general-purpose programs as the representation format, and (b) expose those programs to the user, then experts could customize these systems in powerful new ways and non-experts could enjoy some of the benefits of programmable systems. In recent work, we presented a prototype SVG editor called Sketch-n-Sketch that offered a step towards this vision. In that system, the user wrote a program in a general-purpose lambda-calculus to generate a graphic design and could then directly manipulate the output to indirectly change design parameters (i.e. constant literals) in the program in real-time during the manipulation. Unfortunately, the burden of programming the desired relationships rested entirely on the user. In this paper, we design and implement new features for Sketch-n-Sketch that assist in the programming process itself. Like typical direct manipulation systems, our extended Sketch-n-Sketch now provides GUI-based tools for drawing shapes, relating shapes to each other, and grouping shapes together. Unlike typical systems, however, each tool carries out the user's intention by transforming their general-purpose program. This novel, semi-automated programming workflow allows the user to rapidly create high-level, reusable abstractions in the program while at the same time retaining direct manipulation capabilities. In future work, our approach may be extended with more graphic design features or realized for other application domains.Comment: In 29th ACM User Interface Software and Technology Symposium (UIST 2016

    Interplay between disorder, quantum and thermal fluctuations in ferromagnetic alloys: The case of UCu2Si(2-x)Ge(x)

    Full text link
    We consider, theoretically and experimentally, the effects of structural disorder, quantum and thermal fluctuations in the magnetic and transport properties of certain ferromagnetic alloys.We study the particular case of UCu2Si(2-x)Ge(x). The low temperature resistivity, rho(T,x), exhibits Fermi liquid (FL) behavior as a function of temperature T for all values of x, which can be interpreted as a result of the magnetic scattering of the conduction electrons from the localized U spins. The residual resistivity, rho(0,x), follows the behavior of a disordered binary alloy. The observed non-monotonic dependence of the Curie temperature, Tc(x), with x can be explained within a model of localized spins interacting with an electronic bath whose transport properties cross-over from ballistic to diffusive regimes. Our results clearly show that the Curie temperature of certain alloys can be enhanced due to the interplay between quantum and thermal fluctuations with disorder.Comment: 4 pages, 3 figures, to appear in Phys. Rev. Let
    • …
    corecore