67 research outputs found
Polymorphisms in genes of interleukin 12 and its receptors and their association with protection against severe malarial anaemia in children in western Kenya
Abstract
Background: Malarial anaemia is characterized by destruction of malaria infected red blood cells and suppression
of erythropoiesis. Interleukin 12 (IL12) significantly boosts erythropoietic responses in murine models of malarial
anaemia and decreased IL12 levels are associated with severe malarial anaemia (SMA) in children. Based on the
biological relevance of IL12 in malaria anaemia, the relationship between genetic polymorphisms of IL12 and its
receptors and SMA was examined.
Methods: Fifty-five tagging single nucleotide polymorphisms covering genes encoding two IL12 subunits, IL12A
and IL12B, and its receptors, IL12RB1 and IL12RB2, were examined in a cohort of 913 children residing in Asembo
Bay region of western Kenya.
Results: An increasing copy number of minor variant (C) in IL12A (rs2243140) was significantly associated with a
decreased risk of SMA (P = 0.006; risk ratio, 0.52 for carrying one copy of allele C and 0.28 for two copies).
Individuals possessing two copies of a rare variant (C) in IL12RB1 (rs429774) also appeared to be strongly protective
against SMA (P = 0.00005; risk ratio, 0.18). In addition, children homozygous for another rare allele (T) in IL12A
(rs22431348) were associated with reduced risk of severe anaemia (SA) (P = 0.004; risk ratio, 0.69) and of severe
anaemia with any parasitaemia (SAP) (P = 0.004; risk ratio, 0.66). In contrast, AG genotype for another variant in
IL12RB1 (rs383483) was associated with susceptibility to high-density parasitaemia (HDP) (P = 0.003; risk ratio, 1.21).
Conclusions: This study has shown strong associations between polymorphisms in the genes of IL12A and IL12RB1
and protection from SMA in Kenyan children, suggesting that human genetic variants of IL12 related genes may
significantly contribute to the development of anaemia in malaria patients
The costs of introducing artemisinin-based combination therapy: evidence from district-wide implementation in rural Tanzania
BACKGROUND\ud
\ud
The development of antimalarial drug resistance has led to increasing calls for the introduction of artemisinin-based combination therapy (ACT). However, little evidence is available on the full costs associated with changing national malaria treatment policy. This paper presents findings on the actual drug and non-drug costs associated with deploying ACT in one district in Tanzania, and uses these data to estimate the nationwide costs of implementation in a setting where identification of malaria cases is primarily dependant on clinical diagnosis.\ud
\ud
METHODS\ud
\ud
Detailed data were collected over a three year period on the financial costs of providing ACT in Rufiji District as part of a large scale effectiveness evaluation, including costs of drugs, distribution, training, treatment guidelines and other information, education and communication (IEC) materials and publicity. The district-level costs were scaled up to estimate the costs of nationwide implementation, using four scenarios to extrapolate variable costs.\ud
\ud
RESULTS\ud
\ud
The total district costs of implementing ACT over the three year period were slightly over one million USD, with drug purchases accounting for 72.8% of this total. The composite (best) estimate of nationwide costs for the first three years of ACT implementation was 48.3 million USD (1.29 USD per capita), which varied between 21 and 67.1 million USD in the sensitivity analysis (2003 USD). In all estimates drug costs constituted the majority of total costs. However, non-drug costs such as IEC materials, drug distribution, communication, and health worker training were also substantial, accounting for 31.4% of overall ACT implementation costs in the best estimate scenario. Annual implementation costs are equivalent to 9.5% of Tanzania's recurrent health sector budget, and 28.7% of annual expenditure on medical supplies, implying a 6-fold increase in the national budget for malaria treatment.\ud
\ud
CONCLUSION\ud
\ud
The costs of implementing ACT are substantial. Although drug purchases constituted a majority of total costs, non-drug costs were also considerable. It is clear that substantial external resources will be required to facilitate and sustain effective ACT delivery across Tanzania and other malaria-endemic countries
A retrospective analysis of the change in anti-malarial treatment policy: Peru
<p>Abstract</p> <p>Background</p> <p>National malaria control programmes must deal with the complex process of changing national malaria treatment guidelines, often without guidance on the process of change. Selecting a replacement drug is only one issue in this process. There is a paucity of literature describing successful malaria treatment policy changes to help guide control programs through this process.</p> <p>Objectives</p> <p>To understand the wider context in which national malaria treatment guidelines were formulated in a specific country (Peru).</p> <p>Methods</p> <p>Using qualitative methods (individual and focus group interviews, stakeholder analysis and a review of documents), a retrospective analysis of the process of change in Peru's anti-malarial treatment policy from the early 1990's to 2003 was completed.</p> <p>Results</p> <p>The decision to change Peru's policies resulted from increasing levels of anti-malarial drug resistance, as well as complaints from providers that the drugs were no longer working. The context of the change occurred in a time in which Peru was changing national governments, which created extreme challenges in moving the change process forward. Peru utilized a number of key strategies successfully to ensure that policy change would occur. This included a) having the process directed by a group who shared a common interest in malaria and who had long-established social and professional networks among themselves, b) engaging in collaborative teamwork among nationals and between nationals and international collaborators, c) respect for and inclusion of district-level staff in all phases of the process, d) reliance on high levels of technical and scientific knowledge, e) use of standardized protocols to collect data, and f) transparency.</p> <p>Conclusion</p> <p>Although not perfectly or fully implemented by 2003, the change in malaria treatment policy in Peru occurred very quickly, as compared to other countries. They identified a problem, collected the data necessary to justify the change, utilized political will to their favor, approved the policy, and moved to improve malaria control in their country. As such, they offer an excellent example for other countries as they contemplate or embark on policy changes.</p
Are rapid diagnostic tests more accurate in diagnosis of plasmodium falciparum malaria compared to microscopy at rural health centres?
<p>Abstract</p> <p>Background</p> <p>Prompt, accurate diagnosis and treatment with artemisinin combination therapy remains vital to current malaria control. Blood film microscopy the current standard test for diagnosis of malaria has several limitations that necessitate field evaluation of alternative diagnostic methods especially in low income countries of sub-Saharan Africa where malaria is endemic.</p> <p>Methods</p> <p>The accuracy of axillary temperature, health centre (HC) microscopy, expert microscopy and a HRP2-based rapid diagnostic test (Paracheck) was compared in predicting malaria infection using polymerase chain reaction (PCR) as the gold standard. Three hundred patients with a clinical suspicion of malaria based on fever and or history of fever from a low and high transmission setting in Uganda were consecutively enrolled and provided blood samples for all tests. Accuracy of each test was calculated overall with 95% confidence interval and then adjusted for age-groups and level of transmission intensity using a stratified analysis. The endpoints were: sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV). This study is registered with Clinicaltrials.gov, NCT00565071.</p> <p>Results</p> <p>Of the 300 patients, 88(29.3%) had fever, 56(18.7%) were positive by HC microscopy, 47(15.7%) by expert microscopy, 110(36.7%) by Paracheck and 89(29.7%) by PCR. The overall sensitivity >90% was only shown by Paracheck 91.0% [95%CI: 83.1-96.0]. The sensitivity of expert microscopy was 46%, similar to HC microscopy. The superior sensitivity of Paracheck compared to microscopy was maintained when data was stratified for transmission intensity and age. The overall specificity rates were: Paracheck 86.3% [95%CI: 80.9-90.6], HC microscopy 93.4% [95%CI: 89.1-96.3] and expert microscopy 97.2% [95%CI: 93.9-98.9]. The NPV >90% was shown by Paracheck 95.8% [95%CI: 91.9-98.2]. The overall PPV was <88% for all methods.</p> <p>Conclusion</p> <p>The HRP2-based RDT has shown superior sensitivity compared to microscopy in diagnosis of malaria and may be more suitable for screening of malaria infection.</p
Safety and Efficacy of Methylene Blue Combined with Artesunate or Amodiaquine for Uncomplicated Falciparum Malaria: A Randomized Controlled Trial from Burkina Faso
Besides existing artemisinin-based combination therapies, alternative safe, effective and affordable drug combinations against falciparum malaria are needed. Methylene blue (MB) was the first synthetic antimalarial drug ever used, and recent studies have been promising with regard to its revival in malaria therapy. The objective of this study was to assess the safety and efficacy of two MB-based malaria combination therapies, MB-artesunate (AS) and MB-amodiaquine (AQ), compared to the local standard of care, AS-AQ, in Burkina Faso.Open-label randomised controlled phase II study in 180 children aged 6-10 years with uncomplicated falciparum malaria in Nouna, north-western Burkina Faso. Follow-up was for 28 days and analysis by intention-to-treat. The treatment groups were similar in baseline characteristics and there was only one loss to follow-up. No drug-related serious adverse events and no deaths occurred. MB-containing regimens were associated with mild vomiting and dysuria. No early treatment failures were observed. Parasite clearance time differed significantly among groups and was the shortest with MB-AS. By day 14, the rates of adequate clinical and parasitological response after PCR-based correction for recrudescence were 87% for MB-AS, 100% for MB-AQ (p = 0.004), and 100% for AS-AQ (p = 0.003). By day 28, the respective figure was lowest for MB-AS (62%), intermediate for the standard treatment AS-AQ (82%; p = 0.015), and highest for MB-AQ (95%; p<0.001; p = 0.03).MB-AQ is a promising alternative drug combination against malaria in Africa. Moreover, MB has the potential to further accelerate the rapid parasite clearance of artemisinin-based combination therapies. More than a century after the antimalarial properties of MB had been described, its role in malaria control deserves closer attention.ClinicalTrials.gov NCT00354380
Cost-effectiveness analysis of rapid diagnostic test, microscopy and syndromic approach in the diagnosis of malaria in Nigeria: implications for scaling-up deployment of ACT
BACKGROUND: The diagnosis and treatment of malaria is often based on syndromic presentation (presumptive treatment) and microscopic examination of blood films. Treatment based on syndromic approach has been found to be costly, and contributes to the development of drug resistance, while microscopic diagnosis of malaria is time-consuming and labour-intensive. Also, there is lack of trained microscopists and reliable equipment especially in rural areas of Nigeria. However, although rapid diagnostic tests (RDTs) have improved the ease of appropriate diagnosis of malaria diagnosis, the cost-effectiveness of RDTs in case management of malaria has not been evaluated in Nigeria. The study hence compares the cost-effectiveness of RDT versus syndromic diagnosis and microscopy. METHODS: A total of 638 patients with fever, clinically diagnosed as malaria (presumptive malaria) by health workers, were selected for examination with both RDT and microscopy. Patients positive on RDT received artemisinin-based combination therapy (ACT) and febrile patients negative on RDT received an antibiotic treatment. Using a decision tree model for a hypothetical cohort of 100,000 patients, the diagnostic alternatives considered were presumptive treatment (base strategy), RDT and microscopy. Costs were based on a consumer and provider perspective while the outcome measure was deaths averted. Information on costs and malaria epidemiology were locally generated, and along with available data on effectiveness of diagnostic tests, adherence level to drugs for treatment, and drug efficacy levels, cost-effectiveness estimates were computed using TreeAge programme. Results were reported based on costs and effects per strategy, and incremental cost-effectiveness ratios. RESULTS: The cost-effectiveness analysis at 43.1% prevalence level showed an incremental cost effectiveness ratio (ICER) of 221 per deaths averted between RDT and presumptive treatment, while microscopy is dominated at that level. There was also a lesser cost of RDT (0.37 million) and microscopy ($0.39 million), with effectiveness values of 99,862, 99,735 and 99,851 for RDT, presumptive treatment and microscopy, respectively. Cost-effectiveness was affected by malaria prevalence level, ACT adherence level, cost of ACT, proportion of non-malaria febrile illness cases that were bacterial, and microscopy and RDT sensitivity. CONCLUSION: RDT is cost-effective when compared to other diagnostic strategies for malaria treatment at malaria prevalence of 43.1% and, therefore, a very good strategy for diagnosis of malaria in Nigeria. There is opportunity for cost savings if rapid diagnostic tests are introduced in health facilities in Nigeria for case management of malaria
The evolution of pyrimethamine resistant dhfr in Plasmodium falciparum of south-eastern Tanzania: comparing selection under SP alone vs SP+artesunate combination
BACKGROUND\ud
\ud
Sulphadoxine-pyrimethamine (SP) resistance is now widespread throughout east and southern Africa and artemisinin compounds in combination with synthetic drugs (ACT) are recommended as replacement treatments by the World Health Organization (WHO). As well as high cure rates, ACT has been shown to slow the development of resistance to the partner drug in areas of low to moderate transmission. This study looked for evidence of protection of the partner drug in a high transmission African context. The evaluation was part of large combination therapy pilot implementation programme in Tanzania, the Interdisciplinary Monitoring Programme for Antimalarial Combination Therapy (IMPACT-TZ) METHODS: The growth of resistant dhfr in a parasite population where SP Monotherapy was the first-line treatment was measured for four years (2002-2006), and compared with the development of resistant dhfr in a neighbouring population where SP + artesunate (SP+AS) was used as the first-line treatment during the same interval. The effect of the differing treatment regimes on the emergence of resistance was addressed in three ways. First, by looking at the rate of increase in frequency of pre-existing mutant dhfr alleles under monotherapy and combination therapy. Second, by examining whether de-novo mutant alleles emerged under either treatment. Finally, by measuring diversity at three dhfr flanking microsatellite loci upstream of the dhfr gene.\ud
\ud
RESULTS\ud
\ud
The reduction in SP selection pressure resulting from the adoption of ACT slowed the rate of increase in the frequency of the triple mutant resistant dhfr allele. Comparing between the two populations, the higher levels of genetic diversity in sequence flanking the dhfr triple mutant allele in the population where the ACT regimen had been used indicates the reduction in SP selection pressure arising from combination therapy.\ud
\ud
CONCLUSION\ud
\ud
The study demonstrated that, alleles containing two mutations at the dhfr have arisen at least four times independently while those containing triple mutant dhfr arose only once, and were found carrying a single unique Asian-type flanking sequence, which apparently drives the spread of pyrimethamine resistance associated dhfr alleles in east Africa. SP+AS is not recommended for use in areas where SP cure rates are less than 80% but this study reports an observed principle of combination protection from an area where pyrimethamine resistance was already high
Formal Modeling and Analysis of the MAL-Associated Biological Regulatory Network: Insight into Cerebral Malaria
The discrete modeling formalism of René Thomas is a well known approach for the modeling and analysis of Biological Regulatory Networks (BRNs). This formalism uses a set of parameters which reflect the dynamics of the BRN under study. These parameters are initially unknown but may be deduced from the appropriately chosen observed dynamics of a BRN. The discrete model can be further enriched by using the model checking tool HyTech along with delay parameters. This paves the way to accurately analyse a BRN and to make predictions about critical trajectories which lead to a normal or diseased response. In this paper, we apply the formal discrete and hybrid (discrete and continuous) modeling approaches to characterize behavior of the BRN associated with MyD88-adapter-like (MAL) – a key protein involved with innate immune response to infections. In order to demonstrate the practical effectiveness of our current work, different trajectories and corresponding conditions that may lead to the development of cerebral malaria (CM) are identified. Our results suggest that the system converges towards hyperinflammation if Bruton's tyrosine kinase (BTK) remains constitutively active along with pre-existing high cytokine levels which may play an important role in CM pathogenesis
Antibody-Mediated Growth Inhibition of Plasmodium falciparum: Relationship to Age and Protection from Parasitemia in Kenyan Children and Adults
BACKGROUND: Antibodies that impair Plasmodium falciparum merozoite invasion and intraerythrocytic development are one of several mechanisms that mediate naturally acquired immunity to malaria. Attempts to correlate anti-malaria antibodies with risk of infection and morbidity have yielded inconsistent results. Growth inhibition assays (GIA) offer a convenient method to quantify functional antibody activity against blood stage malaria.
METHODS: A treatment-time-to-infection study was conducted over 12-weeks in a malaria holoendemic area of Kenya. Plasma collected from healthy individuals (98 children and 99 adults) before artemether-lumefantrine treatment was tested by GIA in three separate laboratories.
RESULTS: Median GIA levels varied with P. falciparum line (D10, 8.8%; 3D7, 34.9%; FVO, 51.4% inhibition). The magnitude of growth inhibition decreased with age in all P. falciparum lines tested with the highest median levels among children \u3c4 years compared to adults (e.g. 3D7, 45.4% vs. 30.0% respectively, p = 0.0003). Time-to-infection measured by weekly blood smears was significantly associated with level of GIA controlling for age. Upper quartile inhibition activity was associated with less risk of infection compared to individuals with lower levels (e.g. 3D7, hazard ratio = 1.535, 95% CI = 1.012-2.329; p = 0.0438). Various GIA methodologies had little effect on measured parasite growth inhibition.
CONCLUSION: Plasma antibody-mediated growth inhibition of blood stage P. falciparum decreases with age in residents of a malaria holoendemic area. Growth inhibition assay may be a useful surrogate of protection against infection when outcome is controlled for age
Intermittent preventive treatment for the prevention of malaria during pregnancy in high transmission areas
Malaria in pregnancy is one of the major causes of maternal morbidity and adverse birth outcomes. In high transmission areas, its prevention has recently changed, moving from a weekly or bimonthly chemoprophylaxis to intermittent preventive treatment (IPTp). IPTp consists in the administration of a single curative dose of an efficacious anti-malarial drug at least twice during pregnancy – regardless of whether the woman is infected or not. The drug is administered under supervision during antenatal care visits. Sulphadoxine-pyrimethamine (SP) is the drug currently recommended by the WHO. While SP-IPTp seems an adequate strategy, there are many issues still to be explored to optimize it. This paper reviewed data on IPTp efficacy and discussed how to improve it. In particular, the determination of both the optimal number of doses and time of administration of the drug is essential, and this has not yet been done. As both foetal growth and deleterious effects of malaria are maximum in late pregnancy women should particularly be protected during this period. Monitoring of IPTp efficacy should be applied to all women, and not only to primi- and secondigravidae, as it has not been definitively established that multigravidae are not at risk for malaria morbidity and mortality. In HIV-positive women, there is an urgent need for specific information on drug administration patterns (need for higher doses, possible interference with sulpha-based prophylaxis of opportunistic infections). Because of the growing level of resistance of parasites to SP, alternative drugs for IPTp are urgently needed. Mefloquine is presently one of the most attractive options because of its long half life, high efficacy in sub-Saharan Africa and safety during pregnancy. Also, efforts should be made to increase IPTp coverage by improving the practices of health care workers, the motivation of women and their perception of malaria complications in pregnancy. Because IPTp is not applicable in early pregnancy, which is a period when malaria may also be deleterious for women and their offspring, there is a necessity to integrate this strategy with other preventive measures which can be applied earlier in pregnancy such as insecticide-treated nets
- …