3 research outputs found

    Irradiation leads to apoptosis of Kupffer cells by a Hsp27-dependant pathway followed by release of TNF-α

    Get PDF
    In a previous publication, we were able to show that irradiation of Kupffer cells, the liver resident macrophages, leads to an increased TNF-α concentration in the culture medium. The pathomechanisms underlying this phenomenon, however, remained to be elucidated. Here, we show that following irradiation of Kupffer cells, the apoptosis rate increased drastically within 48 h. At the same time, the total TNF-α concentration in cell lysates of Kupffer cells attached to the culture plate decreased. However, normalization of the TNF-α concentration with respect to cell number revealed that TNF-α concentration per attached cell remained constant during the observation period. Western blot analysis showed that heat shock protein 27 (Hsp27) is strongly downregulated and bax is upregulated in irradiated Kupffer cells as compared to sham-irradiated cells. Overexpression of Hsp27 in Kupffer cells was shown to prevent the effect of irradiation on bax expression, apoptosis and, at the same time, on increase of TNF-α concentration in the Kupffer cell medium. We conclude that irradiation of Kupffer cells leads to apoptosis because of downregulation of Hsp27 and consecutive upregulation of bax expression. Furthermore, we suggest that apoptosis of Kupffer cells leads to an increase of TNF-α concentration in the culture medium which may be due to cell death rather than active release or synthesis

    Analysis of doubly fed induction generator wind turbine system during one phase-to-ground fault

    No full text
    2013 15th European Conference on Power Electronics and Applications, EPE 2013 -- 2 September 2013 through 6 September 2013 -- Lille 101325This paper presents detailed analysis of doubly fed induction generator (DFIG) wind turbine electrical components during normal and unbalanced fault condition. Wind turbine components are individually modeled and then combined in a simulation process which is called coupled simulation. The coupled simulation results show that grid frequency oscillation occurs on q and d axis currents under one phase-ground fault condition. Experimental study has been done to show the effects of fault on rotor currents. Same behavior is also found in experimental rotor currents. Additionally experimental study shows that rotor currents are very sensitive to the grid fault voltage level. © 2013 IEEE.2-s2.0-8489018573
    corecore