161 research outputs found
Recommended from our members
Strontium-90 fluoride data sheet
This report is a compilation of available data and appropriate literature references on the properties of strontium-90 fluoride and nonradioactive strontium fluoride. The objective of the document is to compile in a single source pertinent data to assist potential users in the development, licensing, and use of /sup 90/SrF/sub 2/-fueled radioisotope heat sources for terrestrial power conversion and thermal applications. The report is an update of the Strontium-90 Fluoride Data Sheet (BNWL-2284) originally issued in April 1977
Recommended from our members
Pacific Northwest Laboratory monthly report to Space Nuclear Systems Division for April 1975
Let Me Call You Sweetheart In That Sweet Old Way
https://digitalcommons.library.umaine.edu/mmb-vp/5572/thumbnail.jp
Piperidinols that show anti-tubercular activity as inhibitors of arylamine N-acetyltransferase: an essential enzyme for mycobacterial survival inside macrophages
Latent M. tuberculosis infection presents one of the major obstacles in the global eradication of tuberculosis (TB). Cholesterol plays a critical role in the persistence of M. tuberculosis within the macrophage during latent infection. Catabolism of cholesterol contributes to the pool of propionyl-CoA, a precursor that is incorporated into cell-wall lipids. Arylamine N-acetyltransferase (NAT) is encoded within a gene cluster that is involved in the cholesterol sterol-ring degradation and is essential for intracellular survival. The ability of the NAT from M. tuberculosis (TBNAT) to utilise propionyl-CoA links it to the cholesterol-catabolism pathway. Deleting the nat gene or inhibiting the NAT enzyme prevents intracellular survival and results in depletion of cell-wall lipids. TBNAT has been investigated as a potential target for TB therapies. From a previous high-throughput screen, 3-benzoyl-4-phenyl-1-methylpiperidinol was identified as a selective inhibitor of prokaryotic NAT that exhibited antimycobacterial activity. The compound resulted in time-dependent irreversible inhibition of the NAT activity when tested against NAT from M. marinum (MMNAT). To further evaluate the antimycobacterial activity and the NAT inhibition of this compound, four piperidinol analogues were tested. All five compounds exert potent antimycobacterial activity against M. tuberculosis with MIC values of 2.3-16.9 µM. Treatment of the MMNAT enzyme with this set of inhibitors resulted in an irreversible time-dependent inhibition of NAT activity. Here we investigate the mechanism of NAT inhibition by studying protein-ligand interactions using mass spectrometry in combination with enzyme analysis and structure determination. We propose a covalent mechanism of NAT inhibition that involves the formation of a reactive intermediate and selective cysteine residue modification. These piperidinols present a unique class of antimycobacterial compounds that have a novel mode of action different from known anti-tubercular drugs
Composing Trust Models towards Interoperable Trust Management
Part 2: Full PapersInternational audienceComputational trust is a central paradigm in today's Internet as our modern society is increasingly relying upon online transactions and social net- works. This is indeed leading to the introduction of various trust management systems and associated trust models, which are customized according to their target applications. However, the heterogeneity of trust models prevents exploiting the trust knowledge acquired in one context in another context although this would be beneficial for the digital, ever-connected environment. This is such an issue that this paper addresses by introducing an approach to achieve interoperability between heterogeneous trust management systems. Specifically, we define a trust meta-model that allows the rigorous specification of trust models as well as their composition. The resulting composite trust models enable heterogeneous trust management systems to interoperate transparently through mediators
Drivers and determinants of strain dynamics following faecal microbiota transplantation
Faecal microbiota transplantation (FMT) is an efficacious therapeutic intervention, but its clinical mode of action and underlying microbiome dynamics remain poorly understood. Here, we analysed the metagenomes associated with 142 FMTs, in a time series-based meta-study across five disease indications. We quantified strain-level dynamics of 1,089 microbial species based on their pangenome, complemented with 47,548 newly constructed metagenome- assembled genomes. Using subsets of procedural-, host- and microbiome-based variables, LASSO-regularised regression models accurately predicted the colonisation and resilience of donor and recipient microbes, as well as turnover of individual species. Linking this to putative ecological mechanisms, we found these sets of variables to be informative of the underlying processes that shape the post-FMT gut microbiome. Recipient factors and complementarity of donor and recipient microbiomes, encompassing entire communities to individual strains, were the main determinants of individual strain population dynamics, and mostly independent of clinical outcomes. Recipient community state and the degree of residual strain depletion provided a neutral baseline for donor strain colonisation success, in addition to inhibitive priority effects between species and conspecific strains, as well as putatively adaptive processes. Our results suggest promising tunable parameters to enhance donor flora colonisation or recipient flora displacement in clinical practice, towards the development of more targeted and personalised therapies
Health literacy and public health: A systematic review and integration of definitions and models
<p>Abstract</p> <p>Background</p> <p>Health literacy concerns the knowledge and competences of persons to meet the complex demands of health in modern society. Although its importance is increasingly recognised, there is no consensus about the definition of health literacy or about its conceptual dimensions, which limits the possibilities for measurement and comparison. The aim of the study is to review definitions and models on health literacy to develop an integrated definition and conceptual model capturing the most comprehensive evidence-based dimensions of health literacy.</p> <p>Methods</p> <p>A systematic literature review was performed to identify definitions and conceptual frameworks of health literacy. A content analysis of the definitions and conceptual frameworks was carried out to identify the central dimensions of health literacy and develop an integrated model.</p> <p>Results</p> <p>The review resulted in 17 definitions of health literacy and 12 conceptual models. Based on the content analysis, an integrative conceptual model was developed containing 12 dimensions referring to the knowledge, motivation and competencies of accessing, understanding, appraising and applying health-related information within the healthcare, disease prevention and health promotion setting, respectively.</p> <p>Conclusions</p> <p>Based upon this review, a model is proposed integrating medical and public health views of health literacy. The model can serve as a basis for developing health literacy enhancing interventions and provide a conceptual basis for the development and validation of measurement tools, capturing the different dimensions of health literacy within the healthcare, disease prevention and health promotion settings.</p
Drivers and determinants of strain dynamics following fecal microbiota transplantation
Fecal microbiota transplantation (FMT) is a therapeutic intervention for inflammatory diseases of the gastrointestinal tract, but its clinical mode of action and subsequent microbiome dynamics remain poorly understood. Here we analyzed metagenomes from 316 FMTs, sampled pre and post intervention, for the treatment of ten different disease indications. We quantified strain-level dynamics of 1,089 microbial species, complemented by 47,548 newly constructed metagenome-assembled genomes. Donor strain colonization and recipient strain resilience were mostly independent of clinical outcomes, but accurately predictable using LASSO-regularized regression models that accounted for host, microbiome and procedural variables. Recipient factors and donor-recipient complementarity, encompassing entire microbial communities to individual strains, were the main determinants of strain population dynamics, providing insights into the underlying processes that shape the post-FMT gut microbiome. Applying an ecology-based framework to our findings indicated parameters that may inform the development of more effective, targeted microbiome therapies in the future, and suggested how patient stratification can be used to enhance donor microbiota colonization or the displacement of recipient microbes in clinical practice
Genetic Diversity in Wheat: Analysis using Diversity Arrays Technology (DArT) in bread and durum wheats
With increasing demands on the quality and quantity of food required now and in the future, improvements to current agriculture practices are required. Increased food production requires utilisation of more agricultural land, pushing crops into non- traditional areas. The need for advances in agricultural technologies are not only required for current crop varieties, but for new varieties with increased tolerance to environmental stresses. Technological improvement means better crop yields and reduced land, water, fertilizer and pesticide use. Diversity Arrays Technology (DArT) was used to study wheat diversity, specifically to identify polymorphic markers between various wheat cultivars for use in marker- assisted breeding programs. The hybridisation based technology was used to analyse various bread and durum wheat cultivars for increased understanding of genomic diversity. Analysis shows that DArT is able to discriminate between tissue samples from wheat cultivars grown under various environmental stresses with polymorphic markers identified between samples treated with differing salt, light and temperature conditions. Epigenetic diversity was analysed through methylation detection using DArT to identify a list of candidate polymorphic markers. Markers were identified using the methylation sensitive restriction enzyme McrBC to generate control and treated targets. Diversity through cultivar exploration, looking at breeding experiments between cultivars with phenotypic extremes to examine salt tolerance versus in-tolerance using DArT produced a recombinant inbred line genetic linkage map. Bulk segregant analysis was also used to group phenotypic samples. Candidate markers were identified between cultivars that can be used to genotyping tetraploid and hexaploid wheat cultivars for germplasm identification. In addition, the identification of trait-linked molecular markers, such as salt resistance, plant breeders can genotype individual plants and populations of cultivars to determine the most suitable cultivar to plant that best complements to its local environment. This eliminates the need for multiple planting cycles to optimize crop selections, and gives the plant breeder the highest possible chance for crop success (yield, quality, performance and cost)
- …