6 research outputs found

    Effect of salt stress on growth and accumulation of proline and soluble sugars on plantlets of Pistacia atlantica Desf. subsp. atlantica used as rootstocks

    No full text
    The effect of salt stress on several physiological and biochemical parameters of plantlets Pistacia atlantica Desf. subsp. atlantica was studied under controlled conditions in a climatic room. The plants were grown in pots and irrigated with a Hoagland nutrient solution during 120 days. Then, the plantlets were treated for 10 days with 100, 200, and 400 meq·l-1 NaCl + CaCl2, added to the Hoagland nutrient solution. The applied salts caused stress on the young Pistacia plantlets by reducing the growth of roots and shoots. The amount of free proline in leaves increased significantly with salinity under all treatments, to reach a maximum rate at the highest salinity concentration (400 meq·l-1) for all the plantlets. On the other hand, a significant difference in relative water content (RWC) was noted under the effect of 400 meq·l-1 of NaCl + CaCl2. The plantlets stressed at 100 meq·l-1 did not exhibit any influence of the salt on RWC, but their accumulation of sugars was much higher than at 200 meq·l-1. At 400 meq·l-1 the plantlets also accumulated a high content of soluble sugars, and after seven days of stress, their accumulation rose with the increasing salt concentration. The content of proline and soluble sugars in P. atlantica subsp. atlantica rootstock was very high, indicating that P. atlantica subsp. atlantica can be used as rootstock for Pistacia vera as it is more tolerant to salinity

    Echinops spinosissimus Turra Root Methanolic Extract: Characterization of the Bioactive Components and Relative Wound Healing, Antimicrobial and Antioxidant Properties

    No full text
    Echinops spinosissimus Turra subsp. bovei (Asteraceae) is a medicinal plant in western Algeria. Traditionally, roots and inflorescences are employed as hypertensive agents and in the treatment of hemorrhoids. The current study evaluates the chemical composition, antioxidant, antimicrobial, and wound-healing properties of the root methanolic extract from E. spinosissimus subsp. bovei. The content of total phenolics, flavonoids, and tannins was determined. In addition, the phenolic profile was typified. The studied plant extract resulted in being primarily composed of Apigenin, Kaempferol, and their derivatives. The total phenolic content was equal to 95.31 ± 2.90 mg GAE/g DW, while the number of flavonoids and condensed tannins was 16.01 ± 0.16 mg CE/g DW and 8.30 ± 0.65 mg CE/g DW, respectively. The methanolic extract was found to exhibit antioxidant activity towards the DPPH radical, with an IC50 of 7.99 ± 0.28 mg/mL and a TAC of 30.30 ± 0.54 mg AAE/g DW, as well as an antibacterial effect, especially against P. aeruginosa. No significant wound-healing property was observed, even though the histopathological observations showed enhanced wound-healing quality. According to our evidence, E. spinosissimus could represent a source of phytochemicals with potential beneficial effects for human health in terms of antioxidant and antibiotic properties, although further investigations on this species are needed
    corecore