17,679 research outputs found

    Two monotonic functions involving gamma function and volume of unit ball

    Full text link
    In present paper, we prove the monotonicity of two functions involving the gamma function Γ(x)\Gamma(x) and relating to the nn-dimensional volume of the unit ball Bn\mathbb{B}^n in Rn\mathbb{R}^n.Comment: 7 page

    On the Application of Gluon to Heavy Quarkonium Fragmentation Functions

    Get PDF
    We analyze the uncertainties induced by different definitions of the momentum fraction zz in the application of gluon to heavy quarkonium fragmentation function. We numerically calculate the initial g→J/ψg \to J / \psi fragmentation functions by using the non-covariant definitions of zz with finite gluon momentum and find that these fragmentation functions have strong dependence on the gluon momentum k⃗\vec{k}. As ∣k⃗∣→∞| \vec{k} | \to \infty, these fragmentation functions approach to the fragmentation function in the light-cone definition. Our numerical results show that large uncertainties remains while the non-covariant definitions of zz are employed in the application of the fragmentation functions. We present for the first time the polarized gluon to J/ψJ/\psi fragmentation functions, which are fitted by the scheme exploited in this work.Comment: 11 pages, 7 figures;added reference for sec.

    Experimental demonstration of phase-remapping attack in a practical quantum key distribution system

    Full text link
    Unconditional security proofs of various quantum key distribution (QKD) protocols are built on idealized assumptions. One key assumption is: the sender (Alice) can prepare the required quantum states without errors. However, such an assumption may be violated in a practical QKD system. In this paper, we experimentally demonstrate a technically feasible "intercept-and-resend" attack that exploits such a security loophole in a commercial "plug & play" QKD system. The resulting quantum bit error rate is 19.7%, which is below the proven secure bound of 20.0% for the BB84 protocol. The attack we utilize is the phase-remapping attack (C.-H. F. Fung, et al., Phys. Rev. A, 75, 32314, 2007) proposed by our group.Comment: 16 pages, 6 figure

    Epitaxial graphene on SiC(0001): More than just honeycombs

    Full text link
    The potential of graphene to impact the development of the next generation of electronics has renewed interest in its growth and structure. The graphitization of hexagonal SiC surfaces provides a viable alternative for the synthesis of graphene, with wafer-size epitaxial graphene on SiC(0001) now possible. Despite this recent progress, the exact nature of the graphene-SiC interface and whether the graphene even has a semiconducting gap remain controversial. Using scanning tunneling microscopy with functionalized tips and density functional theory calculations, here we show that the interface is a warped carbon sheet consisting of three-fold hexagon-pentagon-heptagon complexes periodically inserted into the honeycomb lattice. These defects relieve the strain between the graphene layer and the SiC substrate, while still retaining the three-fold coordination for each carbon atom. Moreover, these defects break the six-fold symmetry of the honeycomb, thereby naturally inducing a gap: the calculated band structure of the interface is semiconducting and there are two localized states near K below the Fermi level, explaining the photoemission and carbon core-level data. Nonlinear dispersion and a 33 meV gap are found at the Dirac point for the next layer of graphene, providing insights into the debate over the origin of the gap in epitaxial graphene on SiC(0001). These results indicate that the interface of the epitaxial graphene on SiC(0001) is more than a dead buffer layer, but actively impacts the physical and electronic properties of the subsequent graphene layers

    Comment on "Resilience of gated avalanche photodiodes against bright illumination attacks in quantum cryptography"

    Full text link
    This is a comment on the publication by Yuan et al. [Appl. Phys. Lett. 98, 231104 (2011); arXiv:1106.2675v1 [quant-ph]].Comment: 2 page

    Investigations of afterpulsing and detection efficiency recovery in superconducting nanowire single-photon detectors

    Full text link
    We report on the observation of a non-uniform dark count rate in Superconducting Nanowire Single Photon Detectors (SNSPDs), specifically focusing on an afterpulsing effect present when the SNSPD is operated at a high bias current regime. The afterpulsing exists for real detection events (triggered by input photons) as well as for dark counts (no laser input). In our standard set-up, the afterpulsing is most likely to occur at around 180 ns following a detection event, for both real counts and dark counts. We characterize the afterpulsing behavior and speculate that it is not due to the SNSPD itself but rather the amplifiers used to boost the electrical output signal from the SNSPD. We show that the afterpulsing indeed disappears when we use a different amplifier with a better low frequency response. We also examine the short-lived enhancement of detection efficiency during the recovery of the SNSPD due to temporary perturbation of the bias and grounding conditions
    • …
    corecore