6,539 research outputs found

    A Search for the Optical Counterpart of the Luminous X-ray Source in NGC 6652

    Get PDF
    We examine images of the field of X1832-330, the luminous (Lx ~ 10^36 erg/s) X-ray burst source near the center of the globular cluster NGC 6652, in order to identify the optical counterpart for further study. U and B ground-based images allow us to set a limit M_B > 3.5 for the counterpart at the time of those observations, provided that the color is (U-B)_0 ~ -1, similar to the sources known in other clusters. Archival Hubble Space Telescope observations survey most but not all of the 1 sigma X-ray error circle, and allow us to set limits M_B > 5.9 and M_B > 5.2 in the WF/PC and WFPC2 regions, respectively. In the WF/PC images we do weakly detect a faint object with UV-excess, but it is located 11.7'' from the ROSAT X-ray position. This considerable (2.3 sigma) discrepancy in position suggests that this candidate be treated with caution, but it remains the only reasonable one advanced thus far. We measure for this star m_439 = 20.2 +- 0.2, (m_336 - m_439) = -0.5 +- 0.2, and estimate M_B = 5.5, (U-B)_0 = -0.9, similar to other known optical counterparts. If this candidate is not the identification, our limits imply that the true counterpart, not yet identified, is probably the optically-faintest cluster source yet known, or alternatively that it did not show significant UV excess at the time of these observations. Finally, we assess the outlook for the identification of the remaining luminous globular cluster X-ray sources.Comment: 15 pages including 5 figures and no tables. Accepted for publication in The Astronomical Journal; to appear in Volume 116, September 1998. A preprint with full resolution figures may be downloaded from http://www.astro.washington.edu/deutsch/pubs

    Building multiparticle states with teleportation

    Get PDF
    We describe a protocol which can be used to generate any N-partite pure quantum state using Einstein-Podolsky-Rosen (EPR) pairs. This protocol employs only local operations and classical communication between the N parties (N-LOCC). In particular, we rely on quantum data compression and teleportation to create the desired state. This protocol can be used to obtain upper bounds for the bipartite entanglement of formation of an arbitrary N-partite pure state, in the asymptotic limit of many copies. We apply it to a few multipartite states of interest, showing that in some cases it is not optimal. Generalizations of the protocol are developed which are optimal for some of the examples we consider, but which may still be inefficient for arbitrary states.Comment: 11 pages, 1 figure. Version 2 contains an example for which protocol P3 is better than protocol P2. Correction to references in version

    Why one-size-fits-all vaso-modulatory interventions fail to control glioma invasion: in silico insights

    Full text link
    There is an ongoing debate on the therapeutic potential of vaso-modulatory interventions against glioma invasion. Prominent vasculature-targeting therapies involve functional tumour-associated blood vessel deterioration and normalisation. The former aims at tumour infarction and nutrient deprivation medi- ated by vascular targeting agents that induce occlusion/collapse of tumour blood vessels. In contrast, the therapeutic intention of normalising the abnormal structure and function of tumour vascular net- works, e.g. via alleviating stress-induced vaso-occlusion, is to improve chemo-, immuno- and radiation therapy efficacy. Although both strategies have shown therapeutic potential, it remains unclear why they often fail to control glioma invasion into the surrounding healthy brain tissue. To shed light on this issue, we propose a mathematical model of glioma invasion focusing on the interplay between the mi- gration/proliferation dichotomy (Go-or-Grow) of glioma cells and modulations of the functional tumour vasculature. Vaso-modulatory interventions are modelled by varying the degree of vaso-occlusion. We discovered the existence of a critical cell proliferation/diffusion ratio that separates glioma invasion re- sponses to vaso-modulatory interventions into two distinct regimes. While for tumours, belonging to one regime, vascular modulations reduce the tumour front speed and increase the infiltration width, for those in the other regime the invasion speed increases and infiltration width decreases. We show how these in silico findings can be used to guide individualised approaches of vaso-modulatory treatment strategies and thereby improve success rates

    Conditional Quantum Dynamics and Logic Gates

    Get PDF
    Quantum logic gates provide fundamental examples of conditional quantum dynamics. They could form the building blocks of general quantum information processing systems which have recently been shown to have many interesting non--classical properties. We describe a simple quantum logic gate, the quantum controlled--NOT, and analyse some of its applications. We discuss two possible physical realisations of the gate; one based on Ramsey atomic interferometry and the other on the selective driving of optical resonances of two subsystems undergoing a dipole--dipole interaction.Comment: 5 pages, RevTeX, two figures in a uuencoded, compressed fil

    Simple Realization Of The Fredkin Gate Using A Series Of Two-body Operators

    Get PDF
    The Fredkin three-bit gate is universal for computational logic, and is reversible. Classically, it is impossible to do universal computation using reversible two-bit gates only. Here we construct the Fredkin gate using a combination of six two-body reversible (quantum) operators.Comment: Revtex 3.0, 7 pages, 3 figures appended at the end, please refer to the comment lines at the beginning of the manuscript for reasons of replacemen

    Subharmonics and Aperiodicity in Hysteresis Loops

    Full text link
    We show that it is possible to have hysteretic behavior for magnets that does not form simple closed loops in steady state, but must cycle multiple times before returning to its initial state. We show this by studying the zero-temperature dynamics of the 3d Edwards Anderson spin glass. The specific multiple varies from system to system and is often quite large and increases with system size. The last result suggests that the magnetization could be aperiodic in the large system limit for some realizations of randomness. It should be possible to observe this phenomena in low-temperature experiments.Comment: 4 pages, 3 figure

    Quantum state tomography by continuous measurement and compressed sensing

    Full text link
    The need to perform quantum state tomography on ever larger systems has spurred a search for methods that yield good estimates from incomplete data. We study the performance of compressed sensing (CS) and least squares (LS) estimators in a fast protocol based on continuous measurement on an ensemble of cesium atomic spins. Both efficiently reconstruct nearly pure states in the 16-dimensional ground manifold, reaching average fidelities FCS = 0.92 and FLS = 0.88 using similar amounts of incomplete data. Surprisingly, the main advantage of CS in our protocol is an increased robustness to experimental imperfections

    Quantum ergodicity and entanglement in kicked coupled-tops

    Full text link
    We study the dynamical generation of entanglement as a signature of chaos in a system of periodically kicked coupled-tops, where chaos and entanglement arise from the same physical mechanism. The long-time averaged entanglement as a function of the position of an initially localized wave packet very closely correlates with the classical phase space surface of section -- it is nearly uniform in the chaotic sea, and reproduces the detailed structure of the regular islands. The uniform value in the chaotic sea is explained by the random state conjecture. As classically chaotic dynamics take localized distributions in phase space to random distributions, quantized versions take localized coherent states to pseudo-random states in Hilbert space. Such random states are highly entangled, with an average value near that of the maximally entangled state. For a map with global chaos, we derive that value based on new analytic results for the typical entanglement in a subspace defined by the symmetries of the system. For a mixed phase space, we use the Percival conjecture to identify a "chaotic subspace" of the Hilbert space. The typical entanglement, averaged over the unitarily invariant Haar measure in this subspace, agrees with the long-time averaged entanglement for initial states in the chaotic sea. In all cases the dynamically generated entanglement is predicted by a unitary ensemble of random states, even though the system is time-reversal invariant, and the Floquet operator is a member of the circular orthogonal ensemble.Comment: 12 pages with 8 figure

    Surface states and the charge of a dust particle in a plasma

    Full text link
    We investigate electron and ion surface states of a negatively charged dust particle in a gas discharge and identify the charge of the particle with the electron surface density bound in the polarization-induced short-range part of the particle potential. On that scale, ions do not affect the charge. They are trapped in the shallow states of the Coulomb tail of the potential and act only as screening charges. Using orbital-motion limited electron charging fluxes and the particle temperature as an adjustable parameter, we obtain excellent agreement with experimental data.Comment: 4 pages, 3 figures, slightly revised manuscript including radius dependence of the particle charg
    • …
    corecore