1,483 research outputs found
The FERRUM project: Experimental lifetimes and transition probabilities from highly excited even 4d levels in Fe ii
We report lifetime measurements of the 6 levels in the 3d6(5D)4d e6G term in
Fe ii at an energy of 10.4 eV, and f -values for 14 transitions from the
investigated levels. The lifetimes were measured using time-resolved
laser-induced fluorescence on ions in a laser-produced plasma. The high
excitation energy, and the fact that the levels have the same parity as the the
low-lying states directly populated in the plasma, necessitated the use of a
two-photon excitation scheme. The probability for this process is greatly
enhanced by the presence of the 3d6(5D)4p z6F levels at roughly half the energy
difference. The f -values are obtained by combining the experimental lifetimes
with branching fractions derived using relative intensities from a hollow
cathode discharge lamp recorded with a Fourier transform spectrometer. The data
is important for benchmarking atomic calculations of astrophysically important
quantities and useful for spectroscopy of hot stars.Comment: A&A, accepte
Dependence Logic with Generalized Quantifiers: Axiomatizations
We prove two completeness results, one for the extension of dependence logic
by a monotone generalized quantifier Q with weak interpretation, weak in the
meaning that the interpretation of Q varies with the structures. The second
result considers the extension of dependence logic where Q is interpreted as
"there exists uncountable many." Both of the axiomatizations are shown to be
sound and complete for FO(Q) consequences.Comment: 17 page
Photoemission yield and the electron escape depth determination in metal-oxide-semiconductor structures on N+-type and P+-type silicon substrates
This article gives a quantitative analysis of electron photoemission yield from N+-type and P+-type substrates of MOS structures. Based on this analysis, a method is presented to estimate both the scattering length, l, of electrons in the image force potential well and of photoelectron escape depth, x(esc), from the semiconductor substrate. This method was used to estimate the scattering length and the escape depth from the substrates of Al-SiO2-Si (N+-type and P+-type) structures. It was found that for N+-type substrate structures the scattering in the image force potential well has a dominating influence on the photoemission yield while for P+-type substrate structures both the scattering in the image force potential well and the photoemission from the subsurface regions of the photoemitter play important roles. It was found that the scattering length in the image force potential well was equal to l = 6.7-6.9 nm for structures on both N+ and P+ substrates, produced in the same processing conditions. For structures on P+ substrates, the escape depth was found to be equal to x(esc) = 8-9 nm. The scattering length, l, determined in this study is considerably larger than the one reported previously (l = 3.4 nm) for similar MOS structures. The escape depth x(esc) determined in this study is also considerably larger than the escape depth determined previously (x(esc) = 1.2-2.5 nm) for the external photoemission from uncovered silicon surfaces into vacuum
Mass Fractionation and Energy Distribution of Sputtered Monatomic Positive Ions
Secondary ion yields in sputtering depend significantly on the mass of the emitted species. Ionization as observed by secondary ion mass spectrometry is characterized by isotope fractionation; the yield of an isotope ion of mass Mi being proportional to M-, where a varies with the emitted species, its kinetic energy Ek, and the matrix.
By means of SIMS, isotope ratios have been measured for ions at energies up to ca 120 eV in different metallic matrices. For singly charged positive monatomic ions, a has been found to range between O and ca 4. While a may drop steeply at low or moderate Ek, at higher energies the gradient decreases and usually becomes positive. To some extent the trends of a are complementary to those of the energy dependence of elemental ion yields.
In the present work, the main tendencies are surveyed for pure element matrices as well as for several elements sputtered from a given metallic matrix. It is attempted to correlate a with the energy distributions of ionic yields. Isotope effects appear inherent in all three basic mechanisms of ion emission, i.e., in sputter yield, ionization, and charge survival
Hybrid Algorithms Based on Integer Programming for the Search of Prioritized Test Data in Software Product Lines
In Software Product Lines (SPLs) it is not possible, in general, to test all products of the family. The number of products denoted by a SPL is very high due to the combinatorial explosion of features. For this reason, some coverage criteria have been proposed which try to test at least all feature interactions without the necessity to test all products, e.g., all pairs of features (pairwise coverage). In addition, it is desirable to first test products composed by a set of priority features. This problem is known as the Prioritized Pairwise Test Data Generation Problem. In this work we propose two hybrid algorithms using Integer Programming (IP) to generate a prioritized test suite. The first one is based on an integer linear formulation and the second one is based on a integer quadratic (nonlinear) formulation. We compare these techniques with two state-of-the-art algorithms, the Parallel Prioritized Genetic Solver (PPGS) and a greedy algorithm called prioritized-ICPL. Our study reveals that our hybrid nonlinear approach is clearly the best in both, solution quality and computation time. Moreover, the nonlinear variant (the fastest one) is 27 and 42 times faster than PPGS in the two groups of instances analyzed in this work.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech. Partially funded by the Spanish Ministry of Economy and Competitiveness and FEDER under contract TIN2014-57341-R, the University of Málaga, Andalucía Tech and the Spanish Network TIN2015-71841-REDT (SEBASENet)
A 2-pyridone-amide inhibitor targets the glucose metabolism pathway of Chlamydia trachomatis.
UnlabelledIn a screen for compounds that inhibit infectivity of the obligate intracellular pathogen Chlamydia trachomatis, we identified the 2-pyridone amide KSK120. A fluorescent KSK120 analogue was synthesized and observed to be associated with the C. trachomatis surface, suggesting that its target is bacterial. We isolated KSK120-resistant strains and determined that several resistance mutations are in genes that affect the uptake and use of glucose-6-phosphate (G-6P). Consistent with an effect on G-6P metabolism, treatment with KSK120 blocked glycogen accumulation. Interestingly, KSK120 did not affect Escherichia coli or the host cell. Thus, 2-pyridone amides may represent a class of drugs that can specifically inhibit C. trachomatis infection.ImportanceChlamydia trachomatis is a bacterial pathogen of humans that causes a common sexually transmitted disease as well as eye infections. It grows only inside cells of its host organism, within a parasitophorous vacuole termed the inclusion. Little is known, however, about what bacterial components and processes are important for C. trachomatis cellular infectivity. Here, by using a visual screen for compounds that affect bacterial distribution within the chlamydial inclusion, we identified the inhibitor KSK120. As hypothesized, the altered bacterial distribution induced by KSK120 correlated with a block in C. trachomatis infectivity. Our data suggest that the compound targets the glucose-6-phosphate (G-6P) metabolism pathway of C. trachomatis, supporting previous indications that G-6P metabolism is critical for C. trachomatis infectivity. Thus, KSK120 may be a useful tool to study chlamydial glucose metabolism and has the potential to be used in the treatment of C. trachomatis infections
Digital transcriptome profiling of normal and glioblastoma-derived neural stem cells identifies genes associated with patient survival.
BACKGROUND: Glioblastoma multiforme, the most common type of primary brain tumor in adults, is driven by cells with neural stem (NS) cell characteristics. Using derivation methods developed for NS cells, it is possible to expand tumorigenic stem cells continuously in vitro. Although these glioblastoma-derived neural stem (GNS) cells are highly similar to normal NS cells, they harbor mutations typical of gliomas and initiate authentic tumors following orthotopic xenotransplantation. Here, we analyzed GNS and NS cell transcriptomes to identify gene expression alterations underlying the disease phenotype. METHODS: Sensitive measurements of gene expression were obtained by high-throughput sequencing of transcript tags (Tag-seq) on adherent GNS cell lines from three glioblastoma cases and two normal NS cell lines. Validation by quantitative real-time PCR was performed on 82 differentially expressed genes across a panel of 16 GNS and 6 NS cell lines. The molecular basis and prognostic relevance of expression differences were investigated by genetic characterization of GNS cells and comparison with public data for 867 glioma biopsies. RESULTS: Transcriptome analysis revealed major differences correlated with glioma histological grade, and identified misregulated genes of known significance in glioblastoma as well as novel candidates, including genes associated with other malignancies or glioma-related pathways. This analysis further detected several long non-coding RNAs with expression profiles similar to neighboring genes implicated in cancer. Quantitative PCR validation showed excellent agreement with Tag-seq data (median Pearson r = 0.91) and discerned a gene set robustly distinguishing GNS from NS cells across the 22 lines. These expression alterations include oncogene and tumor suppressor changes not detected by microarray profiling of tumor tissue samples, and facilitated the identification of a GNS expression signature strongly associated with patient survival (P = 1e-6, Cox model). CONCLUSIONS: These results support the utility of GNS cell cultures as a model system for studying the molecular processes driving glioblastoma and the use of NS cells as reference controls. The association between a GNS expression signature and survival is consistent with the hypothesis that a cancer stem cell component drives tumor growth. We anticipate that analysis of normal and malignant stem cells will be an important complement to large-scale profiling of primary tumors.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are
The FERRUM project: laboratory-measured transition probabilities for Cr II
Aims: We measure transition probabilities for Cr II transitions from the z
^4H_J, z ^2D_J, y ^4F_J, and y ^4G_J levels in the energy range 63000 to 68000
cm^{-1}. Methods: Radiative lifetimes were measured using time-resolved
laser-induced fluorescence from a laser-produced plasma. In addition, branching
fractions were determined from intensity-calibrated spectra recorded with a UV
Fourier transform spectrometer. The branching fractions and radiative lifetimes
were combined to yield accurate transition probabilities and oscillator
strengths. Results: We present laboratory measured transition probabilities for
145 Cr II lines and radiative lifetimes for 14 Cr II levels. The
laboratory-measured transition probabilities are compared to the values from
semi-empirical calculations and laboratory measurements in the literature.Comment: 13 pages. Accepted for publication in A&
- …