143 research outputs found
Relative Navigation, Microdischarge Plasma Thruster, and Distributed Communications Experiments on the FASTRAC Mission
Enabling technologies for nanosatellite formations will be demonstrated under the Formation Autonomy Spacecraft with Thrust, Relnav, Attitude, and Crosslink (FASTRAC) program. Two °ight-ready nanosatellites will be designed, fabricated, integrated, and tested during the two year design period. Three speci¯c new and innovative technologies which will be demonstrated during the mission are Relative Navigation, Plasma Microthrusters, and Distributed Communications. A sensor set consisting of Global Positioning System (GPS) receiver, magnetometer, and MEMS Inertial Measurement Unit (IMU) will be used to determine position and coarse attitude. Using a radio crosslink, the two satellites will exchange state vector information and perform sub-meter level accuracy relative navigation. Each satellite will also contain a Microdischarge Plasma Thruster (MPT) developed at UT-Austin. This innovative device is capable of generating low-thrust, high-e±ciency propulsion at low power levels using microdischarge plasmas. The ability of the MPT to extend the life of the orbit will be determined by monitoring the orbit decay rates of the two vehicles as well as the MEMS IMU. A distributed tracking network with multiple university partners will be utilized to track the low Earth orbit satellites. Amateur radio experimenters, high schools, universities, and other interested parties will be encouraged to record telemetry from the satellites and report their data to a project web site for processing. Although the main purpose of the mission is technology demonstration, science goals will also be pursued. These include post-processing sensor measurements to determine satellite drag, as well as Earth atmospheric and magnetospheric studies
Talaromyces atroroseus, a new species efficiently producing industrially relevant red pigments
Some species of Talaromyces secrete large amounts of red pigments. Literature has linked this character to species such as Talaromyces purpurogenus, T. albobiverticillius, T. marneffei, and T. minioluteus often under earlier Penicillium names. Isolates identified as T. purpurogenus have been reported to be interesting industrially and they can produce extracellular enzymes and red pigments, but they can also produce mycotoxins such as rubratoxin A and B and luteoskyrin. Production of mycotoxins limits the use of isolates of a particular species in biotechnology. Talaromyces atroroseus sp. nov., described in this study, produces the azaphilone biosynthetic families mitorubrins and Monascus pigments without any production of mycotoxins. Within the red pigment producing clade, T. atroroseus resolved in a distinct clade separate from all the other species in multigene phylogenies (ITS, β-tubulin and RPB1), which confirm its unique nature. Talaromyces atroroseus resembles T. purpurogenus and T. albobiverticillius in producing red diffusible pigments, but differs from the latter two species by the production of glauconic acid, purpuride and ZG-1494α and by the dull to dark green, thick walled ellipsoidal conidia produced. The type strain of Talaromyces atroroseus is CBS 133442
Construction of plant transformation vectors carrying beet necrotic yellow vein virus coat protein gene (ii)- plant transformation
Fragments containing the coat protein gene of beet necrotic yellow vein virus were cloned in two plant transformation vectors: pCAMBIA3301M with the bar gene as selectable marker, and pCAMBIA1304M, with resistance to hygromycin. Three constructs were made of each vector: CPL, containing coat protein gene with leader sequence; CPS with coat protein gene, and CPSas with coat protein gene in antisense orientation. Vectors pC3301MCPL, pC3301MCPS. and pC3301MCPSas were used in Agrobacterium—mediated transformation of Nicotiana tabacum (tobacco), Nicotiana excelsior and Nicotiana benthamiana. Regenerants that developed roots on selective media were tested for the presence of CP fragments and the bar gene, but most regenerants were nontransformed (50-83% escapes). After all rooted plants had been selfed, and T1 seed germinated on selective media, only plants descending from one N. excelsior regenerant transformed with pC3301MCPS were positive for presence of bar gene and CPS fragment. Tobacco and Nicotiana benthamiana were transformed with constructs pC1304MCPS and pC1304MCPSas. Transformation efficiency was much higher and approximately 50% of regenerants that rooted on media with 20 mg l−1 hygromycin were positive for the presence of CP fragments. All T1 plants were positive for presence of CP fragments
HCV+ Hepatocytes Induce Human Regulatory CD4+ T Cells through the Production of TGF-β
Background: Hepatitis C Virus (HCV) is remarkably efficient at establishing persistent infection and is associated with the development of chronic liver disease. Impaired T cell responses facilitate and maintain persistent HCV infection. Importantly, CD4 + regulatory T cells (Tregs) act by dampening antiviral T cell responses in HCV infection. The mechanism for induction and/or expansion of Tregs in HCV is unknown. Methodology/Principal Findings: HCV-expressing hepatocytes were used to determine if hepatocytes are able to induce Tregs. The infected liver environment was modeled by establishing the co-culture of the human hepatoma cell line, Huh7.5, containing the full-length genome of HCV genotype 1a (Huh7.5-FL) with activated CD4 + T cells. The production of IFN-c was diminished following co-culture with Huh7.5-FL as compared to controls. Notably, CD4 + T cells in contact with Huh7.5-FL expressed an increased level of the Treg markers, CD25, Foxp3, CTLA-4 and LAP, and were able to suppress the proliferation of effector T cells. Importantly, HCV + hepatocytes upregulated the production of TGF-b and blockade of TGF-b abrogated Treg phenotype and function. Conclusions/Significance: These results demonstrate that HCV infected hepatocytes are capable of directly inducing Tregs development and may contribute to impaired host T cell responses
Characterization of antigenic variants of hepatitis C virus in immune evasion
<p>Abstract</p> <p>Background</p> <p>Antigenic variation is an effective way by which viruses evade host immune defense leading to viral persistence. Little is known about the inhibitory mechanisms of viral variants on CD4 T cell functions.</p> <p>Results</p> <p>Using sythetic peptides of a HLA-DRB1*15-restricted CD4 epitope derived from the non-structural (NS) 3 protein of hepatitis C virus (HCV) and its antigenic variants and the peripheral blood mononuclear cells (PBMC) from six HLA-DRB1*15-positive patients chronically infected with HCV and 3 healthy subjects, the <it>in vitro </it>immune responses and the phenotypes of CD4<sup>+</sup>CD25<sup>+ </sup>cells of chronic HCV infection were investigated. The variants resulting from single or double amino acid substitutions at the center of the core region of the Th1 peptide not only induce failed T cell activation but also simultaneously up-regulate inhibitory IL-10, CD25<sup>-</sup>TGF-β<sup>+ </sup>Th3 and CD4<sup>+</sup>IL-10<sup>+ </sup>Tr1 cells. In contrast, other variants promote differentiation of CD25<sup>+</sup>TGF-β<sup>+ </sup>Th3 suppressors that attenuate T cell proliferation.</p> <p>Conclusions</p> <p>Naturally occuring HCV antigenic mutants of a CD4 epitope can shift a protective peripheral Th1 immune response into an inhibitory Th3 and/or Tr1 response. The modulation of antigenic variants on CD4 response is efficient and extensive, and is likely critical in viral persistence in HCV infection.</p
Synergistic Reversal of Intrahepatic HCV-Specific CD8 T Cell Exhaustion by Combined PD-1/CTLA-4 Blockade
Viral persistence is associated with hierarchical antiviral CD8 T cell exhaustion with increased programmed death-1 (PD-1) expression. In HCV persistence, HCV-specific CD8 T cells from the liver (the site of viral replication) display increased PD-1 expression and a profound functional impairment that is not reversed by PD-1 blockade alone. Here, we report that the inhibitory receptor cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) is preferentially upregulated in PD-1+ T cells from the liver but not blood of chronically HCV-infected patients. PD-1/CTLA-4 co-expression in intrahepatic T cells was associated with a profound HCV-specific effector dysfunction that was synergistically reversed by combined PD-1/CTLA-4 blockade in vitro, but not by blocking PD-1 or CTLA-4 alone. A similar effect was observed in circulating HCV-specific CD8 T cells with increased PD-1/CTLA-4 co-expression during acute hepatitis C. The functional response to combined blockade was directly associated with CTLA-4 expression, lost with CD28-depletion and CD4-independent (including CD4+FoxP3+ Tregs). We conclude that PD-1 and CTLA-4 pathways both contribute to virus-specific T cell exhaustion at the site of viral replication by a redundant mechanism that requires combined PD-1/CTLA-4 blockade to reverse. These findings provide new insights into the mechanisms of virus-specific T cell dysfunction, and suggest that the synergistic effect by combined inhibitory receptor blockade might have a therapeutic application against chronic viral infection in vivo, provided that it does not induce autoimmunity
Analysis of FOXP3+ Regulatory T Cells That Display Apparent Viral Antigen Specificity during Chronic Hepatitis C Virus Infection
We reported previously that a proportion of natural CD25+ cells isolated from the PBMC of HCV patients can further upregulate CD25 expression in response to HCV peptide stimulation in vitro, and proposed that virus-specific regulatory T cells (Treg) were primed and expanded during the disease. Here we describe epigenetic analysis of the FOXP3 locus in HCV-responsive natural CD25+ cells and show that these cells are not activated conventional T cells expressing FOXP3, but hard-wired Treg with a stable FOXP3 phenotype and function. Of ∼46,000 genes analyzed in genome wide transcription profiling, about 1% were differentially expressed between HCV-responsive Treg, HCV-non-responsive natural CD25+ cells and conventional T cells. Expression profiles, including cell death, activation, proliferation and transcriptional regulation, suggest a survival advantage of HCV-responsive Treg over the other cell populations. Since no Treg-specific activation marker is known, we tested 97 NS3-derived peptides for their ability to elicit CD25 response (assuming it is a surrogate marker), accompanied by high resolution HLA typing of the patients. Some reactive peptides overlapped with previously described effector T cell epitopes. Our data offers new insights into HCV immune evasion and tolerance, and highlights the non-self specific nature of Treg during infection
Bacterial cellulose production by Gluconacetobacter xylinus by employing alternative culture media
Bacterial cellulose (BC) is used in different fields as a biological material due to its unique properties. Despite there being many BC applications, there still remain many problems associated with bioprocess technology, such as increasing productivity and decreasing production cost. New technologies that use waste from the food industry as raw materials for culture media promote economic advantages because they reduce environmental pollution and stimulate new research for science sustainability. For this reason, BC production requires optimized conditions to increase its application. The main objective of this study was to evaluate BC production by Gluconacetobacter xylinus using industry waste, namely, rotten fruits and milk whey, as culture media. Furthermore, the structure of BC produced at different conditions was also determined. The culture media employed in this study were composed of rotten fruit collected from the disposal of free markets, milk whey from a local industrial disposal, and their combination, and Hestrin and Schramm media was used as standard culture media. Although all culture media studied produced BC, the highest BC yield60 mg/mLwas achieved with the rotten fruit culture. Thus, the results showed that rotten fruit can be used for BC production. This culture media can be considered as a profitable alternative to generate high-value products. In addition, it combines environmental concern with sustainable processes that can promote also the reduction of production cost.The authors would like to acknowledge the Brazil National Council of Technological and Scientific Development (CNPq, FAPESP, and CAPES), the financial support from FAPESP 2009/14897-7, and Fundacao para a Ciencia e a Tecnologia (FCT)/Portugal through the project PTDC/EBB-EBI/112170/2009 for the financial support and scholarship. Special thanks to Talita Almeida Vicentin for technical support
- …