6,158 research outputs found
Quantum suppression of shot noise in atom-size metallic contacts
The transmission of conductance modes in atom-size gold contacts is
investigated by simultaneously measuring conductance and shot noise. The
results give unambiguous evidence that the current in the smallest gold
contacts is mostly carried by nearly fully transmitted modes. In particular,
for a single-atom contact the contribution of additional modes is only a few
percent. In contrast, the trivalent metal aluminum does not show this property.Comment: Fig. 2 replaced, small errors correcte
High-bias stability of monatomic chains
For the metals Au, Pt and Ir it is possible to form freely suspended
monatomic chains between bulk electrodes. The atomic chains sustain very large
current densities, but finally fail at high bias. We investigate the breaking
mechanism, that involves current-induced heating of the atomic wires and
electromigration forces. We find good agreement of the observations for Au
based on models due to Todorov and coworkers. The high-bias breaking of atomic
chains for Pt can also be described by the models, although here the parameters
have not been obtained independently. In the limit of long chains the breaking
voltage decreases inversely proportional to the length.Comment: 7 pages, 5 figure
Density of states and magnetoconductance of disordered Au point contacts
We report the first low temperature magnetotransport measurements on
electrochemically fabricated atomic scale gold nanojunctions. As , the
junctions exhibit nonperturbatively large zero bias anomalies (ZBAs) in their
differential conductance. We consider several explanations and find that the
ZBAs are consistent with a reduced local density of states (LDOS) in the
disordered metal. We suggest that this is a result of Coulomb interactions in a
granular metal with moderate intergrain coupling. Magnetoconductance of atomic
scale junctions also differs significantly from that of less geometrically
constrained devices, and supports this explanation.Comment: 5 pages, 5 figures. Accepted to PRB as Brief Repor
Direct link between Coulomb blockade and shot noise in a quantum coherent structure
We analyze the current-voltage characteristic of a quantum conduction channel
coupled to an electromagnetic environment of arbitrary frequency-dependent
impedance. In the weak blockade regime the correction to the ohmic behavior is
directly related to the channel current fluctuations vanishing at perfect
transmission in the same way as shot noise. This relation can be generalized to
describe the environmental Coulomb blockade in a generic mesoscopic conductor
coupled to an external impedance, as the response of the latter to the current
fluctuations in the former.Comment: 12 pages, 2 figures, submitted to Phys. Rev. Let
Observation of Supershell Structure in Alkali Metal Nanowires
Nanowires are formed by indenting and subsequently retracting two pieces of
sodium metal. Their cross-section gradually reduces upon retraction and the
diameters can be obtained from the conductance. In previous work we have
demonstrated that when one constructs a histogram of diameters from large
numbers of indentation-retraction cycles, such histograms show a periodic
pattern of stable nanowire diameters due to shell structure in the conductance
modes. Here, we report the observation of a modulation of this periodic
pattern, in agreement with predictions of a supershell structure.Comment: Phys. Rev. Lett., in prin
The effect of targeting Tie2 on hemorrhagic shock-induced renal perfusion disturbances in rats
Background: Hemorrhagic shock is associated with acute kidney injury and increased mortality. Targeting the endothelial angiopoietin/Tie2 system, which regulates endothelial permeability, previously reduced hemorrhagic shock-induced vascular leakage. We hypothesized that as a consequence of vascular leakage, renal perfusion and function is impaired and that activating Tie2 restores renal perfusion and function. Methods: Rats underwent 1 h of hemorrhagic shock and were treated with either vasculotide or PBS as control, followed by fluid resuscitation for 4 h. Microcirculatory perfusion was measured in the renal cortex and cremaster muscle using contrast echography and intravital microscopy, respectively. Changes in the angiopoietin/Tie2 system and renal injury markers were measured in plasma and on protein and mRNA level in renal tissue. Renal edema formation was determined by wet/dry weight ratios and renal structure by histological analysis. Results: Hemorrhagic shock significantly decreased renal perfusion (240 +/- 138 to 51 +/- 40, p 0.9 at all time points) or reduce renal injury (NGAL p = 0.26, KIM-1 p = 0.78, creatinine p > 0.9, renal edema p = 0.08), but temporarily improved cremaster perfusion at 3 h following start of fluid resuscitation compared to untreated rats (resuscitation + 3 h: 11 +/- 3 vs 8 +/- 3 perfused vessels, p < 0.05). Conclusion: Hemorrhagic shock-induced renal impairment cannot be restored by standard fluid resuscitation, nor by activation of Tie2. Future treatment strategies should focus on reducing angiopoietin-2 levels or on activating Tie2 via an alternative strategy
Evidence for saturation of channel transmission from conductance fluctuations in atomic-size point contacts
The conductance of atomic size contacts has a small, random, voltage
dependent component analogous to conductance fluctuations observed in diffusive
wires (UCF). A new effect is observed in gold contacts, consisting of a marked
suppression of these fluctuations when the conductance of the contact is close
to integer multiples of the conductance quantum. Using a model based on the
Landauer-Buettiker formalism we interpret this effect as evidence that the
conductance tends to be built up from fully transmitted (i.e., saturated)
channels plus a single, which is partially transmitted.Comment: An error in Eq.(2) was corrected, where a square root was added to
the factor (1-cos(gamma)). This results in a revised estimate for the mean
free path of 5 nm, which is now fully consistent with the estimates from the
series resistance and the thermopowe
Measurement of the conductance of a hydrogen molecule
Recent years have shown steady progress in research towards molecular
electronics [1,2], where molecules have been investigated as switches [3-5],
diodes [6], and electronic mixers [7]. In much of the previous work a Scanning
Tunnelling Microscope was employed to address an individual molecule. As this
arrangement does not provide long-term stability, more recently
metal-molecule-metal links have been made using break junction devices [8-10].
However, it has been difficult to establish unambiguously that a single
molecule forms the contact [11]. Here, we show that a single H2 molecule can
form a stable bridge between Pt electrodes. In contrast to results for other
organic molecules, the bridge has a nearly perfect conductance of one quantum
unit, carried by a single channel. The H2-bridge provides a simple test system
and a fundamental step towards understanding transport properties of
single-molecule devices.Comment: 6 pages, 4 figure
Shot noise suppression at room temperature in atomic-scale Au junctions
Shot noise encodes additional information not directly inferable from simple
electronic transport measurements. Previous measurements in atomic-scale metal
junctions at cryogenic temperatures have shown suppression of the shot noise at
particular conductance values. This suppression demonstrates that transport in
these structures proceeds via discrete quantum channels. Using a high frequency
technique, we simultaneously acquire noise data and conductance histograms in
Au junctions at room temperature and ambient conditions. We observe noise
suppression at up to three conductance quanta, with possible indications of
current-induced local heating and noise in the contact region at high
biases. These measurements demonstrate the quantum character of transport at
room temperature at the atomic scale. This technique provides an additional
tool for studying dissipation and correlations in nanodevices.Comment: 15 pages, 4 figures + supporting information (6 pages, 6 figures
Shot noise suppression in multimode ballistic Fermi conductors
We have derived a general formula describing current noise in multimode
ballistic channels connecting source and drain electrodes with Fermi electron
gas. In particular (at ), the expression describes the
nonequilibrium ''shot'' noise, which may be suppressed by both Fermi
correlations and space charge screening. The general formula has been applied
to an approximate model of a 2D nanoscale, ballistic MOSFET. At large negative
gate voltages, when the density of electrons in the channel is small, shot
noise spectral density approaches the Schottky value , where
is the average current. However, at positive gate voltages, when the
maximum potential energy in the channel is below the Fermi level of the
electron source, the noise can be at least an order of magnitude smaller than
the Schottky value, mostly due to Fermi effects.Comment: 4 page
- …