14,335 research outputs found

    Non-Abelian quantized Hall states of electrons at filling factors 12/5 and 13/5 in the first excited Landau level

    Full text link
    We present results of extensive numerical calculations on the ground state of electrons in the first excited (n=1) Landau level with Coulomb interactions, and including non-zero thickness effects, for filling factors 12/5 and 13/5 in the torus geometry. In a region that includes these experimentally-relevant values, we find that the energy spectrum and the overlaps with the trial states support the previous hypothesis that the system is in the non-Abelian k = 3 liquid phase we introduced in a previous paper.Comment: 5 pages (Revtex4), 7 figure

    Incompressible liquid state of rapidly-rotating bosons at filling factor 3/2

    Full text link
    Bosons in the lowest Landau level, such as rapidly-rotating cold trapped atoms, are investigated numerically in the specially interesting case in which the filling factor (ratio of particle number to vortex number) is 3/2. When a moderate amount of a longer-range (e.g. dipolar) interaction is included, we find clear evidence that the ground state is in a phase constructed earlier by two of us, in which excitations possess non-Abelian statistics.Comment: 5 pages, 5 figure

    Dense loops, supersymmetry, and Goldstone phases in two dimensions

    Full text link
    Loop models in two dimensions can be related to O(N) models. The low-temperature dense-loops phase of such a model, or of its reformulation using a supergroup as symmetry, can have a Goldstone broken-symmetry phase for N<2. We argue that this phase is generic for -2< N <2 when crossings of loops are allowed, and distinct from the model of non-crossing dense loops first studied by Nienhuis [Phys. Rev. Lett. 49, 1062 (1982)]. Our arguments are supported by our numerical results, and by a lattice model solved exactly by Martins et al. [Phys. Rev. Lett. 81, 504 (1998)].Comment: RevTeX, 5 pages, 3 postscript figure

    Spin-Peierls states of quantum antiferromagnets on the CaV4O9Ca V_4 O_9 lattice

    Full text link
    We discuss the quantum paramagnetic phases of Heisenberg antiferromagnets on the 1/5-depleted square lattice found in CaV4O9Ca V_4 O_9. The possible phases of the quantum dimer model on this lattice are obtained by a mapping to a quantum-mechanical height model. In addition to the ``decoupled'' phases found earlier, we find a possible intermediate spin-Peierls phase with spontaneously-broken lattice symmetry. Experimental signatures of the different quantum paramagnetic phases are discussed.Comment: 9 pages; 2 eps figure

    Non-abelian statistics of half-quantum vortices in p-wave superconductors

    Full text link
    Excitation spectrum of a half-quantum vortex in a p-wave superconductor contains a zero-energy Majorana fermion. This results in a degeneracy of the ground state of the system of several vortices. From the properties of the solutions to Bogoliubov-de-Gennes equations in the vortex core we derive the non-abelian statistics of vortices identical to that for the Moore-Read (Pfaffian) quantum Hall state.Comment: 5 pages, 3 figures, REVTeX, epsf. Reference adde

    On the statistical evaluation of dose-response functions

    Get PDF
    The linear-quadratic dependence of effect on the dose of ionizing radiation and its biophysical implications are considered. The estimation of the parameters of the response function and the derivation of the joint confidence region of the estimates are described. The method is applied to the induction of pink mutations inTradescantia which follows the linear-quadratic model. The statistical procedure is also suitable for other response functions

    SU(N) Quantum Hall Skyrmions

    Full text link
    We have investigated skyrmions in N-component quantum Hall systems. We find that SU(N) skyrmions are the lowest energy charged excitations for filling factors \nu = 1,2,...,N-1 for small enough symmetry breaking terms. N>2 skyrmions can be realized in Si QH systems based on the (110) or (111) interfaces of Si, or perhaps in Si (100) systems, where the spin and valley isospin together provide an SU(4)-symmetry, or in multilayer QH systems. We also present Hartree-Fock results for a phenomenological easy-axis SU(2)-breaking model appropriate to valley degeneracy.Comment: 5 pages, 2 figure

    Near-field interaction between domain walls in adjacent Permalloy nanowires

    Get PDF
    The magnetostatic interaction between two oppositely charged transverse domain walls (DWs)in adjacent Permalloy nanowires is experimentally demonstrated. The dependence of the pinning strength on wire separation is investigated for distances between 13 and 125 nm, and depinning fields up to 93 Oe are measured. The results can be described fully by considering the interaction between the full complex distribution of magnetic charge within rigid, isolated DWs. This suggests the DW internal structure is not appreciably disturbed by the pinning potential, and that they remain rigid although the pinning strength is significant. This work demonstrates the possibility of non-contact DW trapping without DW perturbation and full continuous flexibility of the pinning potential type and strength. The consequence of the interaction on DW based data storage schemes is evaluated.Comment: 4 pages, 4 figures, 1 page supplimentary material (supporting.ps

    Structure of human saposin A at lysosomal pH.

    Get PDF
    The saposins are essential cofactors for the normal lysosomal degradation of complex glycosphingolipids by acid hydrolase enzymes; defects in either saposin or hydrolase function lead to severe metabolic diseases. Saposin A (SapA) activates the enzyme β-galactocerebrosidase (GALC), which catalyzes the breakdown of β-D-galactocerebroside, the principal lipid component of myelin. SapA is known to bind lipids and detergents in a pH-dependent manner; this is accompanied by a striking transition from a `closed' to an `open' conformation. However, previous structures were determined at non-lysosomal pH. This work describes a 1.8 Å resolution X-ray crystal structure determined at the physiologically relevant lysosomal pH 4.8. In the absence of lipid or detergent at pH 4.8, SapA is observeed to adopt a conformation closely resembling the previously determined `closed' conformation, showing that pH alone is not sufficient for the transition to the `open' conformation. Structural alignments reveal small conformational changes, highlighting regions of flexibility.CHH is funded by a Wellcome Trust PhD studentship, RJR is supported by a Principal Research Fellowship funded by the Wellcome Trust (Grant No. 082961/Z/07/Z) and JED is supported by a Royal Society University Research Fellowship (UF100371). The Cambridge Institute for Medical Research is supported by a Wellcome Trust Strategic Award (100140).This is the final version of the article. It first appeared from Wiley via http://dx.doi.org/10.1107/S2053230X1500858

    Separation of spin and charge in paired spin-singlet quantum Hall states

    Get PDF
    We propose a series of paired spin-singlet quantum Hall states, which exhibit a separation of spin and charge degrees of freedom. The fundamental excitations over these states, which have filling fraction \nu=2/(2m+1) with m an odd integer, are spinons (spin-1/2 and charge zero) or fractional holons (charge +/- 1/(2m+1) and spin zero). The braid statistics of these excitations are non-abelian. The mechanism for the separation of spin and charge in these states is topological: spin and charge excitations are liberated by binding to a vortex in a p-wave pairing condensate. We briefly discuss related, abelian spin-singlet states and possible transitions.Comment: 4 pages, uses revtex
    • …
    corecore