1,210 research outputs found
Hamiltonian approach to QCD in Coulomb gauge - a survey of recent results
I report on recent results obtained within the Hamiltonian approach to QCD in
Coulomb gauge. Furthermore this approach is compared to recent lattice data,
which were obtained by an alternative gauge fixing method and which show an
improved agreement with the continuum results. By relating the Gribov
confinement scenario to the center vortex picture of confinement it is shown
that the Coulomb string tension is tied to the spatial string tension. For the
quark sector a vacuum wave functional is used which explicitly contains the
coupling of the quarks to the transverse gluons and which results in
variational equations which are free of ultraviolet divergences. The
variational approach is extended to finite temperatures by compactifying a
spatial dimension. The effective potential of the Polyakov loop is evaluated
from the zero-temperature variational solution. For pure Yang--Mills theory,
the deconfinement phase transition is found to be second order for SU(2) and
first order for SU(3), in agreement with the lattice results. The corresponding
critical temperatures are found to be and , respectively. When quarks are included, the deconfinement
transition turns into a cross-over. From the dual and chiral quark condensate
one finds pseudo-critical temperatures of and , respectively, for the deconfinement and chiral transition.Comment: Talk given by H. Reinhardt at "5th Winter Workshop on
Non-Perturbative Quantum Field Theory", 22-24 March 2017, Sophia-Antipolis,
France. arXiv admin note: text overlap with arXiv:1609.09370,
arXiv:1510.03286, arXiv:1607.0814
Partial spin freezing in the quasi-two-dimensional La2(Cu,Li)O4
In conventional spin glasses, the magnetic interaction is not strongly
anisotropic and the entire spin system freezes at low temperature. In
La2(Cu,Li)O4, for which the in-plane exchange interaction dominates the
interplane one, only a fraction of spins with antiferromagnetic correlations
extending to neighboring planes become spin-glass. The remaining spins with
only in-plane antiferromagnetic correlations remain spin-liquid at low
temperature. Such a novel partial spin freezing out of a spin-liquid observed
in this cold neutron scattering study is likely due to a delicate balance
between disorder and quantum fluctuations in the quasi-two dimensional S=1/2
Heisenberg system.Comment: 4 pages, 4 figure
Field-induced coupled superconductivity and spin density wave order in the Heavy Fermion compound CeCoIn5
The high field superconducting state in CeCoIn5 has been studied by
transverse field muon spin rotation measurements with an applied field parallel
to the crystallographic c-axis close to the upper critical field Hc2 = 4.97 T.
At magnetic fields >= 4.8 T the muon Knight shift is enhanced and the
superconducting transition changes from second order towards first order as
predicted for Pauli-limited superconductors. The field and temperature
dependence of the transverse muon spin relaxation rate sigma reveal
paramagnetic spin fluctuations in the field regime from 2 T < H < 4.8 T. In the
normal state close to Hc2 correlated spin fluctuations as described by the self
consistent renormalization theory are observed. The results support the
formation of a mode-coupled superconducting and antiferromagnetically ordered
phase in CeCoIn5 for H directed parallel to the c-axis.Comment: 5 paes, 4 figure
Chiral Correction to the Spin Fluctuation Feedback in two-dimensional p-wave Superconductors
We consider the stability of the superconducting phase for spin-triplet
p-wave pairing in a quasi-two-dimensional system. We show that in the absence
of spin-orbit coupling there is a chiral contribution to spin fluctuation
feedback which is related to spin quantum Hall effect in a chiral
superconducting phase. We show that this mechanism supports the stability of a
chiral p-wave state.Comment: 8 pages. The final version is accepted for publication in Europhys
Let
Possible f-wave superconductivity in SrRuO?
Until recently it has been believed that the superconductivity in
SrRuO is described by p-wave pairing. However, both the recent specific
heat and the magnetic penetration depth measurements on the purest single
crystals of SrRuO appear to be explained more consistently in terms of
f-wave superconductivity. In order to further this hypothesis, we study
theoretically the thermodynamics and thermal conductivity of f-wave
superconductors in a planar magnetic field. We find the simple expressions for
these quantities when and , which should be
readily accessible experimentally.Comment: 6 pages, 2 figure
muSR linewidth and isotropic pairing in superconducting PrOs4Sb12
Transverse-field muon spin rotation measurements in the vortex-lattice mixed
state of the heavy-fermion (HF) superconductor PrOs4Sb12 yield a temperature
dependence of the penetration depth indicative of an isotropic or nearly
isotropic energy gap. This is not seen to date in any other HF superconductor
and is a signature of isotropic pairing symmetry, possibly related to a novel
nonmagnetic "quadrupolar Kondo" HF mechanism in PrOs4Sb12. The T = 0 relaxation
rate \sigma_s(0) = 0.91(1) \mu s^-1 yields an estimated penetration depth
\lambda(0) = 3440(20) \AA, which is considerably shorter than in other HF
superconductors.Comment: 4 pages, 5 figure
- …