254 research outputs found

    Effect of uncertainty in land use, damage models and inundation depth on flood damage estimates

    Get PDF
    With the recent transition to a more risk-based approach in flood management, flood risk models-being a key component in flood risk management-are becoming increasingly important. Such models combine information from four components: (1) the flood hazard (mostly inundation depth), (2) the exposure (e.g. land use), (3) the value of elements at risk and (4) the susceptibility of the elements at risk to hydrologic conditions (e.g. depth-damage curves). All these components contain, however, a certain degree of uncertainty which propagates through the calculation and accumulates in the final damage estimate. In this study, an effort has been made to assess the influence of uncertainty in these four components on the final damage estimate. Different land-use data sets and damage models have been used to represent the uncertainties in the exposure, value and susceptibility components. For the flood hazard component, inundation depth has been varied systematically to estimate the sensitivity of flood damage estimations to this component. The results indicate that, assuming the uncertainty in inundation depth is about 25 cm (about 15% of the mean inundation depth), the total uncertainty surrounding the final damage estimate in the case study area can amount to a factor 5-6. The value of elements at risk and depth-damage curves are the most important sources of uncertainty in flood damage estimates and can both introduce about a factor 2 of uncertainty in the final damage estimates. Very large uncertainties in inundation depth would be necessary to have a similar effect on the uncertainty of the final damage estimate, which seem highly unrealistic. Hence, in order to reduce the uncertainties surrounding potential flood damage estimates, these components deserve prioritisation in future flood damage research. While absolute estimates of flood damage exhibit considerable uncertainty (the above-mentioned factor 5-6), estimates for proportional changes in flood damages (defined as the change in flood damages as a percentage of a base situation) are much more robust. © 2010 The Author(s)

    Uncertainty and sensitivity analysis of coastal flood damage estimates in the west of the Netherlands

    Get PDF
    Uncertainty analyses of flood damage assessments generally require a large amount of model evaluations. This is often hampered by the high computational costs necessary to calculate flood extents and depths using 2-dimensional flow models. In this paper we developed a new approach to estimate flood inundation depths that can be incorporated in a Monte Carlo uncertainty analysis. This allows estimation of the uncertainty in flood damage estimates and the determination of which parameters contribute the most to this uncertainty. The approach is applied on three breach locations on the west coast of the Netherlands. In total, uncertainties in 12 input parameters were considered in this study, related to the storm surge, breach growth and the damage calculation. We show that the uncertainty in flood damage estimates is substantial, with the bounds of the 95% confidence range being more than four times smaller or larger than the median. The most influential parameter is uncertainty in depth-damage curves, but five other parameters also contribute substantially. The contribution of uncertainty in parameters related to the damage calculation is about equal to the contribution of parameters related to the volume of the inflowing water. Given the emphasis of most risk assessments on the estimation of the hazard, this implies that the damage calculation aspect deserves more attention in flood risk research efforts. Given the large uncertainties found in this study, it is recommended to always perform multiple calculations in flood simulations and damage assessments to capture the full range of model outcomes

    Flood maps in Europe - methods, availability and use

    Get PDF
    To support the transition from traditional flood defence strategies to a flood risk management approach at the basin scale in Europe, the EU has adopted a new Directive (2007/60/EC) at the end of 2007. One of the major tasks which member states must carry out in order to comply with this Directive is to map flood hazards and risks in their territory, which will form the basis of future flood risk management plans. This paper gives an overview of existing flood mapping practices in 29 countries in Europe and shows what maps are already available and how such maps are used. Roughly half of the countries considered have maps covering as good as their entire territory, and another third have maps covering significant parts of their territory. Only five countries have very limited or no flood maps available yet. Of the different flood maps distinguished, it appears that flood extent maps are the most commonly produced floods maps (in 23 countries), but flood depth maps are also regularly created (in seven countries). Very few countries have developed flood risk maps that include information on the consequences of flooding. The available flood maps are mostly developed by governmental organizations and primarily used for emergency planning, spatial planning, and awareness raising. In spatial planning, flood zones delimited on flood maps mainly serve as guidelines and are not binding. Even in the few countries (e.g. France, Poland) where there is a legal basis to regulate floodplain developments using flood zones, practical problems are often faced which reduce the mitigating effect of such binding legislation. Flood maps, also mainly extent maps, are also created by the insurance industry in Europe and used to determine insurability, differentiate premiums, or to assess long-term financial solvency. Finally, flood maps are also produced by international river commissions. With respect to the EU Flood Directive, many countries already have a good starting point to map their flood hazards. A flood risk based map that includes consequences, however, has yet to be developed by most countries

    Effect of spatial adaptation measures on flood risk in the coastal area of Flanders

    Get PDF

    Sensitivity of global river discharges under Holocene and future climate conditions

    Get PDF
    A comparative analysis of global river basins shows that some river discharges are more sensitive to future climate change for the coming century than to natural climate variability over the last 9000 years. In these basins (Ganges, Mekong, Volta, Congo, Amazon, Murray-Darling, Rhine, Oder, Yukon) future discharges increase by 6-61%. These changes are of similar magnitude to changes over the last 9000 years. Some rivers (Nile, Syr Darya) experienced strong reductions in discharge over the last 9000 years (17-56%), but show much smaller responses to future warming. The simulation results for the last 9000 years are validated with independent proxy data

    How are flood risk estimates affected by the choice of return-periods?

    Get PDF
    Flood management is more and more adopting a risk based approach, whereby flood risk is the product of the probability and consequences of flooding. One of the most common approaches in flood risk assessment is to estimate the damage that would occur for floods of several exceedance probabilities (or return periods), to plot these on an exceedance probability-loss curve (risk curve) and to estimate risk as the area under the curve. However, there is little insight into how the selection of the return-periods (which ones and how many) used to calculate risk actually affects the final risk calculation. To gain such insights, we developed and validated an inundation model capable of rapidly simulating inundation extent and depth, and dynamically coupled this to an existing damage model. The method was applied to a section of the River Meuse in the southeast of the Netherlands. Firstly, we estimated risk based on a risk curve using yearly return periods from 2 to 10 000 yr (€ 34 million p.a.). We found that the overall risk is greatly affected by the number of return periods used to construct the risk curve, with over-estimations of annual risk between 33% and 100% when only three return periods are used. In addition, binary assumptions on dike failure can have a large effect (a factor two difference) on risk estimates. Also, the minimum and maximum return period considered in the curve affects the risk estimate considerably. The results suggest that more research is needed to develop relatively simple inundation models that can be used to produce large numbers of inundation maps, complementary to more complex 2-D–3-D hydrodynamic models. It also suggests that research into flood risk could benefit by paying more attention to the damage caused by relatively high probability floods
    • …
    corecore