13,559 research outputs found

    Diffusion and spectral dimension on Eden tree

    Full text link
    We calculate the eigenspectrum of random walks on the Eden tree in two and three dimensions. From this, we calculate the spectral dimension dsd_s and the walk dimension dwd_w and test the scaling relation ds=2df/dwd_s = 2d_f/d_w (=2d/dw=2d/d_w for an Eden tree). Finite-size induced crossovers are observed, whereby the system crosses over from a short-time regime where this relation is violated (particularly in two dimensions) to a long-time regime where the behavior appears to be complicated and dependent on dimension even qualitatively.Comment: 11 pages, Plain TeX with J-Phys.sty style, HLRZ 93/9

    On the Shape of the Tail of a Two Dimensional Sand Pile

    Full text link
    We study the shape of the tail of a heap of granular material. A simple theoretical argument shows that the tail adds a logarithmic correction to the slope given by the angle of repose. This expression is in good agreement with experiments. We present a cellular automaton that contains gravity, dissipation and surface roughness and its simulation also gives the predicted shape.Comment: LaTeX file 4 pages, 4 PS figures, also available at http://pmmh.espci.fr

    Ratcheting of granular materials

    Get PDF
    We investigate the quasi-static mechanical response of soils under cyclic loading using a discrete model of randomly generated convex polygons. This response exhibits a sequence of regimes, each one characterized by a linear accumulation of plastic deformation with the number of cycles. At the grain level, a quasi-periodic ratchet-like behavior is observed at the contacts, which excludes the existence of an elastic regime. The study of this slow dynamics allows to explore the role of friction in the permanent deformation of unbound granular materials supporting railroads and streets.Comment: Changed content Submitted to Physical Review Letter

    Multiple Invaded Consolidating Materials

    Full text link
    We study a multiple invasion model to simulate corrosion or intrusion processes. Estimated values for the fractal dimension of the invaded region reveal that the critical exponents vary as function of the generation number GG, i.e., with the number of times the invasion process takes place. The averaged mass MM of the invaded region decreases with a power-law as a function of GG, M∼GβM\sim G^{\beta}, where the exponent β≈0.6\beta\approx 0.6. We also find that the fractal dimension of the invaded cluster changes from d1=1.887±0.002d_{1}=1.887\pm0.002 to ds=1.217±0.005d_{s}=1.217\pm0.005. This result confirms that the multiple invasion process follows a continuous transition from one universality class (NTIP) to another (optimal path). In addition, we report extensive numerical simulations that indicate that the mass distribution of avalanches P(S,L)P(S,L) has a power-law behavior and we find that the exponent τ\tau governing the power-law P(S,L)∼S−τP(S,L)\sim S^{-\tau} changes continuously as a function of the parameter GG. We propose a scaling law for the mass distribution of avalanches for different number of generations GG.Comment: 8 pages and 16 figure
    • …
    corecore