64 research outputs found
Synchronization of coupled limit cycles
A unified approach for analyzing synchronization in coupled systems of
autonomous differential equations is presented in this work. Through a careful
analysis of the variational equation of the coupled system we establish a
sufficient condition for synchronization in terms of the geometric properties
of the local limit cycles and the coupling operator. This result applies to a
large class of differential equation models in physics and biology. The
stability analysis is complemented with a discussion of numerical simulations
of a compartmental model of a neuron.Comment: Journal of Nonlinear Science, accepte
Subject specific demands of teaching: Implications for out-of-field teachers
This chapter provides a framework for thinking about the subject-specific nature of teaching in terms of the
knowledge, modes of inquiry and discursive practices that delineate one subject from another in the
traditional school curriculum. The chapter will explore how these disciplinary traits are translated into
teaching as curriculum, knowledge and pedagogy, and how this subject-specificity of teaching is
juxtaposed against the more generic aspects of teaching. The chapter explores the idea that if a teacher’s
expertise can be situated within a field, then they can also be positioned out-of-field. Implications for
teaching out-of-field are discussed in terms of the subject-specific knowledge, processes and skills, and the
difficulties associated with teacher practice. English and Australian illustrations of teacher practices from
in-field and out-of-field situations are provided, in particular highlighting the demands of moving across
subject boundaries. Cross-fertilisation is especially evident when subjects are integrated, therefore, the
issues associated with integrated curriculum are discussed where the traditional subject boundaries are
being challenged as schools are reorganised to integrate subjects through, for example, STEM teaching, or
holistic curriculum designs
Current status and future perspectives of lithium metal batteries
With the lithium-ion technology approaching its intrinsic limit with graphite-based anodes, Li metal is recently receiving renewed interest from the battery community as potential high capacity anode for next-generation rechargeable batteries. In this focus paper, we review the main advances in this field since the first attempts in the mid-1970s. Strategies for enabling reversible cycling and avoiding dendrite growth are thoroughly discussed, including specific applications in all-solid-state (inorganic and polymeric), Lithium–Sulfur (Li–S) and Lithium-O2 (air) batteries. A particular attention is paid to recent developments of these battery technologies and their current state with respect to the 2030 targets of the EU Integrated Strategic Energy Technology Plan (SET-Plan) Action 7
Reciprocal Regulation of Anaerobic and Aerobic Cell Wall Mannoprotein Gene Expression in Saccharomyces cerevisiae
The DAN/TIR genes encode nine cell wall mannoproteins in Saccharomyces cerevisiae which are expressed during anaerobiosis (DAN1, DAN2, DAN3, DAN4, TIR1, TIR2, TIR3, TIR4, and TIP1). Most are expressed within an hour of an anaerobic shift, but DAN2 and DAN3 are expressed after about 3 h. At the same time, CWP1 and CWP2, the genes encoding the major mannoproteins, are down-regulated, suggesting that there is a programmed remodeling of the cell wall in which Cwp1 and Cwp2 are replaced by nine anaerobic counterparts. TIP1, TIR1, TIR2, and TIR4 are also induced during cold shock. Correspondingly, CWP1 is down-regulated during cold shock. As reported elsewhere, Mox4 is a heme-inhibited activator, and Mot3 is a heme-induced repressor of the DAN/TIR genes (but not of TIP1). We show that CWP2 (but not CWP1) is controlled by the same factors, but in reverse fashion—primarily by Mot3 (which can function as either an activator or repressor) but also by Mox4, accounting for the reciprocal regulation of the two groups of genes. Disruptions of TIR1, TIR3, or TIR4 prevent anaerobic growth, indicating that each protein is essential for anaerobic adaptation. The Dan/Tir and Cwp proteins are homologous, with the greatest similarities shown within three subgroups: the Dan proteins, the Tip and Tir proteins, and, more distantly, the Cwp proteins. The clustering of homology corresponds to differences in expression: the Tip and Tir proteins are expressed during hypoxia and cold shock, the Dan proteins are more stringently repressed by oxygen and insensitive to cold shock, and the Cwp proteins are oppositely regulated by oxygen and temperature
- …