6,434 research outputs found

    Instanton and Monopole in External Chromomagnetic Fields

    Get PDF
    We study properties of instanton and monopole in an external chromomagnetic field. Generally, the 't Hooft ansatz is no longer a solution of the Yang-Mills field equation in the presence of external fields. Therefore, we investigate a stabilized instanton solution with minimal total Yang-Mills action in a nontrivial topological sector. With this aim, we consider numerical minimization of the action with respect to the global color orientation, the anisotropic scale transformation and the local gauge-like transformation starting from a simple superposed gauge field of the 't Hooft ansatz and the external color field. Here, the external color field is, for simplicity, chosen to be a constant Abelian magnetic field along a certain direction. Then, the 4-dimensional rotational symmetry O(4) of the instanton solution is reduced to two 2-dimensional rotational symmetries O(2)×O(2)O(2)\times O(2) due to the effect of a homogeneous external field. In the space \mib{R}^{3} at fixed tt, we find a quadrupole deformation of this instanton solution. In the presence of a magnetic field H⃗\vec{H}, a prolate deformation occurs along the direction of H⃗\vec{H}. Contrastingly, in the presence of an electric field E⃗\vec{E} an oblate deformation occurs along the direction of E⃗\vec{E}. We further discuss the local correlation between the instanton and the monopole in the external field in the maximally Abelian gauge. The external field affects the appearance of the monopole trajectory around the instanton. In fact, a monopole and anti-monopole pair appears around the instanton center, and this monopole loop seems to partially screen the external field.Comment: 15 pages,8 figure

    Velocity of domain-wall motion induced by electrical current in a ferromagnetic semiconductor (Ga,Mn)As

    Full text link
    Current-induced domain-wall motion with velocity spanning over five orders of magnitude up to 22 m/s has been observed by magneto-optical Kerr effect in (Ga,Mn)As with perpendicular magnetic anisotropy. The data are employed to verify theories of spin-transfer by the Slonczewski-like mechanism as well as by the torque resulting from spin-flip transitions in the domain-wall region. Evidence for domain-wall creep at low currents is found.Comment: 5 pages, 3 figure

    Study of Field-Induced Magnetic Order in Singlet-Ground-State Magnet CsFeCl3_3

    Full text link
    The field-induced magnetic order in the singlet-ground-state system CsFeCl3_3 has been studied by measuring magnetization and neutron diffraction. The field dependence of intensity for the neutron magnetic reflection has clearly demonstrated that the field-induced ordered phase is described by the order parameter . A condensate growth of magnons is investigated through the temperature dependence of MzM_z and M⊥M_{\perp}, and this ordering is discussed in the context of a magnon Bose-Einstein condensation. Development of the coherent state and the static correlation length has been observed in the incommensurate phase in the field region of 5Hc5 H_{\rm c}, a satellite peak was found in coexistence with the commensurate peak at the phase boundary around 10 T, which indicates that the tilt of the c-axis would be less than ∼0.5∘\sim 0.5^{\circ} in the whole experiments.Comment: 5 pages, 5 figure

    Impact of dark matter subhalos on extended HI disks of galaxies: Possible formation of HI fine structures and stars

    Full text link
    Recent observations have discovered star formation activities in the extreme outer regions of disk galaxies. However it remains unclear what physical mechanisms are responsible for triggering star formation in such low-density gaseous environments of galaxies. In order to understand the origin of these outer star-forming regions, we numerically investigate how the impact of dark matter subhalos orbiting a gas-rich disk galaxy embedded in a massive dark matter halo influences the dynamical evolution of outer HI gas disk of the galaxy. We find that if the masses of the subhalos (MsbM_{\rm sb}) in a galaxy with an extended HI gas disk are as large as 10−3×Mh10^{-3} \times M_{\rm h}, where MhM_{\rm h} is the total mass of the galaxy's dark halo, local fine structures can be formed in the extended HI disk. We also find that the gas densities of some apparently filamentary structures can exceed a threshold gas density for star formation and thus be likely to be converted into new stars in the outer part of the HI disk in some models with larger MsbM_{\rm sb}. These results thus imply that the impact of dark matter subhalos (``dark impact'') can be important for better understanding the origin of recent star formation discovered in the extreme outer regions of disk galaxies. We also suggest that characteristic morphologies of local gaseous structures formed by the dark impact can indirectly prove the existence of dark matter subhalos in galaxies. We discuss the origin of giant HI holes observed in some gas-rich galaxies (e.g., NGC 6822) in the context of the dark impact.Comment: 8 pages, 4 figures, accepted by ApJ

    Domain-wall resistance in ferromagnetic (Ga,Mn)As

    Full text link
    A series of microstructures designed to pin domain-walls (DWs) in (Ga,Mn)As with perpendicular magnetic anisotropy has been employed to determine extrinsic and intrinsic contributions to DW resistance. The former is explained quantitatively as resulting from a polarity change in the Hall electric field at DW. The latter is one order of magnitude greater than a term brought about by anisotropic magnetoresistance and is shown to be consistent with disorder-induced misstracing of the carrier spins subject to spatially varying magnetization

    Brane-World Black Hole Solutions via a Confining Potential

    Full text link
    Using a confining potential, we consider spherically symmetric vacuum (static black hole) solutions in a brane-world scenario. Working with a constant curvature bulk, two interesting cases/solutions are studied. A Schwarzschild-de Sitter black hole solution similar to the standard solution in the presence of a cosmological constant is obtained which confirms the idea that an extra term in the field equations on the brane can play the role of a positive cosmological constant and may be used to account for the accelerated expansion of the universe. The other solution is one in which we can have a proper potential to explain the galaxy rotation curves without assuming the existence of dark matter and without working with new modified theories (modified Newtonian dynamics).Comment: 12 pages, to appear in PR

    Charge ordering in theta-(BEDT-TTF)_2 X materials

    Full text link
    We investigate theoretically charge ordered states on the anisotropic triangular lattice characteristic of the theta-(BEDT-TTF)_2 X materials. Using exact diagonalization studies, we establish that the charge order (CO) pattern corresponds to a ``horizontal'' stripe structure, with ...1100... CO along the two directions with larger electron hopping (p-directions), and ...1010... CO along the third direction (c-direction). The CO is accompanied by co-operative bond dimerizations along all three directions in the highest spin state. In the lowest spin state bonds along the p-directions are tetramerized. Our theory explains the occurence of a charge-induced high temperature transition as well as a spin gap transition at lower temperature.Comment: 4 pages, 4 eps figures, uses jpsj2.cl

    Weak Lensing of Galaxy Clusters in MOND

    Get PDF
    We study weak gravitational lensing of galaxy clusters in terms of the MOND (MOdified Newtonian Dynamics) theory. We calculate shears and convergences of background galaxies for three clusters (A1689, CL0024+1654, CL1358+6245) and the mean profile of 42 SDSS (Sloan Digital Sky Survey) clusters and compare them with observational data. The mass profile is modeled as a sum of X-ray gas, galaxies and dark halo. For the shear as a function of the angular radius, MOND predicts a shallower slope than the data irrespective of the critical acceleration parameter g0g_0. The dark halo is necessary to explain the data for any g0g_0 and for three interpolation functions. If the dark halo is composed of massive neutrinos, its mass should be heavier than 2 eV. However the constraint still depends on the dark halo model and there are systematic uncertainties, and hence the more careful study is necessary to put a stringent constraint.Comment: 12 pages, 7 figures, references added, minor changes, accepted for publication in Ap

    Anomalous Hall effect in field-effect structures of (Ga,Mn)As

    Full text link
    The anomalous Hall effect in metal-insulator-semiconductor structures having thin (Ga,Mn)As layers as a channel has been studied in a wide range of Mn and hole densities changed by the gate electric field. Strong and unanticipated temperature dependence, including a change of sign, of the anomalous Hall conductance σxy\sigma_{xy} has been found in samples with the highest Curie temperatures. For more disordered channels, the scaling relation between σxy\sigma_{xy} and σxx\sigma_{xx}, similar to the one observed previously for thicker samples, is recovered.Comment: 5 pages, 5 figure

    Coexistence of distinct charge fluctuations in θ\theta-(BEDT-TTF)2_2X

    Full text link
    Using the Lanczos exact-diagonalization and density-matrix renormalization group methods, we study the extended Hubbard model at quarter filling defined on the anisotropic triangular lattice. We focus on charge ordering (CO) phenomena induced by onsite and intersite Coulomb interactions. We determine the ground-state phase diagram including three CO phases, i.e., diagonal, vertical, and three-fold CO phases, based on the calculated results of the hole density and double occupancy. We also calculate the dynamical density-density correlation functions and find possible coexistence of the diagonal and three-fold charge fluctuations in a certain parameter region where the onsite and intersite interactions compete. Furthermore, the characteristic features of the optical conductivity for each CO phase are discussed.Comment: 9 pages, 7 figure
    • …
    corecore