131 research outputs found

    Finite reduction and Morse index estimates for mechanical systems

    Full text link
    A simple version of exact finite dimensional reduction for the variational setting of mechanical systems is presented. It is worked out by means of a thorough global version of the implicit function theorem for monotone operators. Moreover, the Hessian of the reduced function preserves all the relevant information of the original one, by Schur's complement, which spontaneously appears in this context. Finally, the results are straightforwardly extended to the case of a Dirichlet problem on a bounded domain.Comment: 13 pages; v2: minor changes, to appear in Nonlinear Differential Equations and Application

    Analysis of the UK Government's 2011 tourism policy

    Get PDF
    This review considers the UK Government's 2011 tourism policy document. The policy was produced during a period of public sector restructuring in the UK and also during the global economic crisis, which began in 2008. The policy sets out a number of reforms to the governance of tourism at the national and local levels, which aim to increase the level of private sector involvement in leading and developing the tourism sector and to reduce the sector's dependence on public funding. During a period of economic slowdown in the UK, the tourism industry can make a significant contribution to growth, but it is not yet clear whether these proposed reforms will support or impede the future development of the tourism industry in the UK

    Behavioral Characterization of the Novel GABA B Receptor- Positive Modulator GS39783 (N,NЈ-Dicyclopentyl-2- methylsulfanyl-5-nitro-pyrimidine-4,6-diamine): Anxiolytic-Like Activity without Side Effects Associated with Baclofen or Benzodiazepines

    Get PDF
    ABSTRACT The role of GABA B receptors in various behavioral processes has been largely defined using the prototypical GABA B receptor agonist baclofen. However, baclofen induces sedation, hypothermia and muscle relaxation, which may interfere with its use in behavioral paradigms. Although there is much evidence for a role of the inhibitory neurotransmitter GABA in the pathophysiology of anxiety, the role of GABA B receptors in these disorders is largely unclear. We recently identified GS39783 (N,NЈ-dicyclopentyl-2-methylsulfanyl-5-nitro-pyrimidine-4,6-diamine) as a selective allosteric positive modulator at GABA B receptors. The aim of the present study was to broadly characterize the effects of GS39783 in well-validated rodent models for motor activity, cognition, and anxiety. The following tests were included: locomotor activity in rats and mice, rotarod and traction tests (including determinations of core temperature) in mice, passive avoidance in mice and rats, elevated plus maze in rats, elevated zero maze in mice and rats, stress-induced hyperthermia in mice, and pentobarbital-and ethanol-induced sleep in mice. Unlike baclofen and/or the benzodiazepine chlordiazepoxide, GS39783 had no effect in any of the tests for locomotion, cognition, temperature, or narcosis. Most interestingly, GS39783 had anxiolytic-like effects in all the tests used. Overall, the data obtained here suggest that positive modulation of GABA B receptors may serve as a novel therapeutic strategy for the development of anxiolytics, with a superior side effect profile to both baclofen and benzodiazepines

    Rhetoric and reality in Bangladesh: Elite stakeholder perceptions of the implementation of tourism policy

    Get PDF
    National tourism policy in Bangladesh is a relatively new development and this research is the first to focus on the implementation of tourism policy in Bangladesh. Taking a social constructivist perspective, interviews were carried out with thirteen elite stakeholders, from the public and private sectors, who are associated with the creation and implementation of tourism policy in Bangladesh. The data was analysed qualitatively using a content analysis approach to examine perceptions of the policy implementation process, and its success. In the case of Bangladesh, it is the persistence of hierarchical governance structures that appears to be hindering the effective implementation of tourism policy. This can be seen in the selection of priority areas by the government, the preferred policy instruments, and in the ways in which the private sector is being incentivised to support national tourism development

    Gastrin-Releasing Peptide Signaling Plays a Limited and Subtle Role in Amygdala Physiology and Aversive Memory

    Get PDF
    Links between synaptic plasticity in the lateral amygdala (LA) and Pavlovian fear learning are well established. Neuropeptides including gastrin-releasing peptide (GRP) can modulate LA function. GRP increases inhibition in the LA and mice lacking the GRP receptor (GRPR KO) show more pronounced and persistent fear after single-trial associative learning. Here, we confirmed these initial findings and examined whether they extrapolate to more aspects of amygdala physiology and to other forms of aversive associative learning. GRP application in brain slices from wildtype but not GRPR KO mice increased spontaneous inhibitory activity in LA pyramidal neurons. In amygdala slices from GRPR KO mice, GRP did not increase inhibitory activity. In comparison to wildtype, short- but not long-term plasticity was increased in the cortico-lateral amygdala (LA) pathway of GRPR KO amygdala slices, whereas no changes were detected in the thalamo-LA pathway. In addition, GRPR KO mice showed enhanced fear evoked by single-trial conditioning and reduced spontaneous firing of neurons in the central nucleus of the amygdala (CeA). Altogether, these results are consistent with a potentially important modulatory role of GRP/GRPR signaling in the amygdala. However, administration of GRP or the GRPR antagonist (D-Phe6, Leu-NHEt13, des-Met14)-Bombesin (6–14) did not affect amygdala LTP in brain slices, nor did they affect the expression of conditioned fear following intra-amygdala administration. GRPR KO mice also failed to show differences in fear expression and extinction after multiple-trial fear conditioning, and there were no differences in conditioned taste aversion or gustatory neophobia. Collectively, our data indicate that GRP/GRPR signaling modulates amygdala physiology in a paradigm-specific fashion that likely is insufficient to generate therapeutic effects across amygdala-dependent disorders

    Geophysical monitoring and reactive transport modeling of ureolytically-driven calcium carbonate precipitation

    Get PDF
    Ureolytically-driven calcium carbonate precipitation is the basis for a promising in-situ remediation method for sequestration of divalent radionuclide and trace metal ions. It has also been proposed for use in geotechnical engineering for soil strengthening applications. Monitoring the occurrence, spatial distribution, and temporal evolution of calcium carbonate precipitation in the subsurface is critical for evaluating the performance of this technology and for developing the predictive models needed for engineering application. In this study, we conducted laboratory column experiments using natural sediment and groundwater to evaluate the utility of geophysical (complex resistivity and seismic) sensing methods, dynamic synchrotron x-ray computed tomography (micro-CT), and reactive transport modeling for tracking ureolytically-driven calcium carbonate precipitation processes under site relevant conditions. Reactive transport modeling with TOUGHREACT successfully simulated the changes of the major chemical components during urea hydrolysis. Even at the relatively low level of urea hydrolysis observed in the experiments, the simulations predicted an enhanced calcium carbonate precipitation rate that was 3-4 times greater than the baseline level. Reactive transport modeling results, geophysical monitoring data and micro-CT imaging correlated well with reaction processes validated by geochemical data. In particular, increases in ionic strength of the pore fluid during urea hydrolysis predicted by geochemical modeling were successfully captured by electrical conductivity measurements and confirmed by geochemical data. The low level of urea hydrolysis and calcium carbonate precipitation suggested by the model and geochemical data was corroborated by minor changes in seismic P-wave velocity measurements and micro-CT imaging; the latter provided direct evidence of sparsely distributed calcium carbonate precipitation. Ion exchange processes promoted through NH4+ production during urea hydrolysis were incorporated in the model and captured critical changes in the major metal species. The electrical phase increases were potentially due to ion exchange processes that modified charge structure at mineral/water interfaces. Our study revealed the potential of geophysical monitoring for geochemical changes during urea hydrolysis and the advantages of combining multiple approaches to understand complex biogeochemical processes in the subsurface

    Effects of Cannabinoids on Caffeine Contractures in Slow and Fast Skeletal Muscle Fibers of the Frog

    Get PDF
    The effect of cannabinoids on caffeine contractures was investigated in slow and fast skeletal muscle fibers using isometric tension recording. In slow muscle fibers, WIN 55,212-2 (10 and 5 μM) caused a decrease in tension. These doses reduced maximum tension to 67.43 ± 8.07% (P = 0.02, n = 5) and 79.4 ± 14.11% (P = 0.007, n = 5) compared to control, respectively. Tension-time integral was reduced to 58.37 ± 7.17% and 75.10 ± 3.60% (P = 0.002, n = 5), respectively. Using the CB1 cannabinoid receptor agonist ACPA (1 μM) reduced the maximum tension of caffeine contractures by 68.70 ± 11.63% (P = 0.01, n = 5); tension-time integral was reduced by 66.82 ± 6.89% (P = 0.02, n = 5) compared to controls. When the CB1 receptor antagonist AM281 was coapplied with ACPA, it reversed the effect of ACPA on caffeine-evoked tension. In slow and fast muscle fibers incubated with the pertussis toxin, ACPA had no effect on tension evoked by caffeine. In fast muscle fibers, ACPA (1 μM) also decreased tension; the maximum tension was reduced by 56.48 ± 3.4% (P = 0.001, n = 4), and tension-time integral was reduced by 57.81 ± 2.6% (P = 0.006, n = 4). This ACPA effect was not statistically significant with respect to the reduction in tension in slow muscle fibers. Moreover, we detected the presence of mRNA for the cannabinoid CB1 receptor on fast and slow skeletal muscle fibers, which was significantly higher in fast compared to slow muscle fiber expression. In conclusion, our results suggest that in the slow and fast muscle fibers of the frog cannabinoids diminish caffeine-evoked tension through a receptor-mediated mechanism
    corecore